如圖,P—ABCD是正四棱錐,是正方體,其中

(1)求證:

(2)求平面PAD與平面所成的銳二面角的余弦值;

(3)求到平面PAD的距離

 

【答案】

 (1)證明  略(2)。(3)。

【解析】本試題主要是考查了線線垂直和二面角的求解以及點(diǎn)到面的距離的求解。

(1)合理的建立空間直角坐標(biāo)系,然后利用向量的數(shù)量積為零來證明線線的垂直。

(2)利用求解平面的法向量與法向量的夾角得到二面角的平面角的求解。

(3)根據(jù)直線的方向向量,與平面的法向量來表示點(diǎn)到面的距離,即為射影的運(yùn)用

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,P-ABCD是正四棱錐,ABCD-A1B1C1D1是正方體,其中AB=2,PA=
6

(1)求證:PA⊥B1D1;
(2)求平面PAD與平面BDD1B1所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,P-ABCD是正四棱錐,ABCD-A1B1C1D1是正方體,其中AB=2,PA=
6
.平面PAD與平面BDD1B1所成的銳二面角θ的余弦值為( 。
A、
10
10
B、
5
5
C、
15
5
D、
10
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P-ABCD是正四棱錐,ABCD-A1B1C1D1是正方體,其中AB=2,PA=
6
,則B1到平面PAD的距離為
6
5
5
6
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P-ABCD是正四棱錐,PA=
3
,AB=2.
(1)求證:平面PAC⊥平面PBD;
(2)求該四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P-ABCD是底面水平放置且△PAB在正面的正四棱錐,已知PA=
3
,AB=2.
(1)畫出這個(gè)正四棱錐的正視圖(或稱主視圖),并直接標(biāo)明正視圖各邊的長;
(2)求該四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案