若復數(shù)z滿足(1-2i)z=3+i,則復數(shù)z的虛部為( 。
A、-
7
3
B、-
7
3
i
C、
7
5
D、
7
5
i
考點:復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:設z=a+bi,由已知條件推導出(a+2b)+(b-2a)i=3+i,由此能求出復數(shù)z的虛部.
解答: 解:設z=a+bi,
∵(1-2i)z=3+i,
∴(1-2i)(a+bi)
=a-2ai+bi-2bi2
=(a+2b)+(b-2a)i
=3+i,
a+2b=3
b-2a=1
,解得a=
1
5
,b=
7
5

∴復數(shù)z的虛部為
7
5

故選:C.
點評:本題考查復數(shù)的虛部的求法,是基礎題,解題時要認真審題,注意復數(shù)的代數(shù)形式的乘除運算法則的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

由曲線y=x3與x=y2所圍成的曲邊形的面積( 。
A、
1
3
B、
1
2
C、1
D、
5
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列各組函數(shù)中,f(x)與g(x)表示同一函數(shù)的為( 。
①f(x)=lnx,g(x)=
1
2
lnx2
②f(x)=x,g(x)=
x2

③f(x)=lnex,g(x)=elnx
④f(x)=log
1
2
x,g(x)=log2
1
x
A、①④B、③④C、④D、③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①y=ln2,則y′=
1
2
;
②y=
1
x2
,則y′|x=3=-
2
27

③y=2x,則y′=2x•ln2;
④y=log2x,則y′=
1
xln2

其中正確命題的個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由y=-x2與直線y=2x-3圍成的圖形的面積是( 。
A、
5
3
B、
32
3
C、
64
3
D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)
1-i
1+i
+i等于( 。
A、-iB、1C、-1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某少兒電視節(jié)目組邀請了三組明星家庭(明星爸爸及其孩子)一起參加50米趣味賽跑活動.已知這三組家庭的各方面情況幾乎相同,要求從比賽開始明星爸爸必須為自己的孩子領跑,直至完成比賽.記這三位爸爸分別為A、B、C,其孩子相應記為a,b,c.
(Ⅰ)若A、B、C、a為前四名,求第二名為孩子a的概率;
(Ⅱ)設孩子a的成績是第X名,求隨機變量X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

探究函數(shù)f(x)=x+
4
x
-2,x∈(0,+∞)的最小值,并確定取得最小值時x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 6.5 3 2.17 2.05 2.005 2 2.005 2.02 2.04 2. 3 3 3.8 5.57
請觀察表中y值隨x值變化的特點,完成以下的問題.
(Ⅰ)函數(shù)f(x)=x+
4
x
-2(x>0)在區(qū)間(0,2)上遞減;函數(shù)f(x)=x+
4
x
-2(x>0)在區(qū)間
 
上遞增;當x=
 
時,y最小=
 

(Ⅱ)證明:函數(shù)f(x)=x+
4
x
-2(x>0)在區(qū)間(0,2)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某少兒電視節(jié)目組邀請了三組明星家庭(明星爸爸及其孩子)一起參加50米趣味賽跑活動.已知這三組家庭的各方面情況幾乎相同,要求從比賽開始明星爸爸必須為自己的孩子領跑,直至其完成比賽.記這三位爸爸分別為A、B、C,其孩子相應記為D、E、F.
(Ⅰ)若A、B、D、E為前四名,求第三名為孩子E的概率;
(Ⅱ)若孩子F的成績是第6名,求孩子E的成績?yōu)榈谌母怕剩?/div>

查看答案和解析>>

同步練習冊答案