【題目】已知函數(shù).

(Ⅰ)求函數(shù)處的切線方程;

(Ⅱ)若對任意的,恒成立,求的取值范圍;

(Ⅲ)當(dāng)時,設(shè)函數(shù).證明:對于任意的,函數(shù)有且只有一個零點.

【答案】(Ⅰ)(Ⅱ)(Ⅲ)見證明

【解析】

I)求得切點坐標(biāo)和斜率,由此求得切線方程.II)將原不等式分離常數(shù),得到恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值,由此求得的取值范圍.III)先求得的表達(dá)式,然后利用導(dǎo)數(shù)證得上有一個零點.再利用導(dǎo)數(shù)證得上沒有零點,由此得證.

解:(Ⅰ)已知函數(shù),

可得,且,

函數(shù)處的切線方程為.

(Ⅱ)對任意恒成立,所以.

,則

,解得.

當(dāng)時時,,所以上單調(diào)遞增;

當(dāng)時,,所以上單調(diào)遞減.

所以,

所以,即,所以的取值范圍為.

(Ⅲ)證明:由已知,則.且可知.

當(dāng)時,,單調(diào)遞增,,,所以有唯一實根.

當(dāng)時,令,則.單調(diào)遞減;在單調(diào)遞增.所以.所以沒有實根.

綜上,對于任意的,函數(shù)有且只有一個零點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,平面平面,且.

(Ⅰ)求證:∥平面;

(Ⅱ)求二面角的大小;

(Ⅲ)已知點在棱上,且異面直線所成角的余弦值為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中:底面ABCD,底面ABCD為梯形,,,且,BC=1,M為棱PD上的點。

(Ⅰ)若,求證:CM∥平面PAB;

(Ⅱ)求證:平面平面PAB;

(Ⅲ)求直線BD與平面PAD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,,的中點.

(1)求證:;

(2)求證:平面;

(3)求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)若曲線在點處的切線與直線平行,求滿足的關(guān)系;

(2)當(dāng)時,討論的單調(diào)性;

(3)當(dāng)時,對任意的,總有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為我國數(shù)學(xué)家趙爽(約3世紀(jì)初)在為《周髀算經(jīng)》作注時驗證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個小區(qū)域涂色,規(guī)定每個區(qū)域只涂一種顏色,相鄰區(qū)域顏色不相同,則不同的涂色方案共有(

A.360B.720C.480D.420

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知8件不同的產(chǎn)品中有3件次品,現(xiàn)對它們一一進(jìn)行測試,直至找到所有次品.

(1)若恰在第2次測試時,找到第一件次品,第6次測試時,才找到最后一件次品,則共有多少種不同的測試方法?

(2)若至多測試5次就能找到所有次品,則共有多少種不同的測試方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右頂點是雙曲線的頂點,且橢圓的上頂點到雙曲線的漸近線的距離為 。

(1)求橢圓的方程;

(2)若直線相交于兩點,與相交于兩點,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若曲線在點處的切線經(jīng)過點(0,1),求實數(shù)的值;

(Ⅱ)求證:當(dāng)時,函數(shù)至多有一個極值點;

查看答案和解析>>

同步練習(xí)冊答案