(12分)已知是定義在(0,+∞)上的增函數(shù),且滿(mǎn)足 ,
(1)求證:=1 (2) 求不等式的解集.
(1)見(jiàn)解析;(2){x/3<x<6}。
解析試題分析:(1)由題意得f(1)=f(1×1)=f(1)+f(1)=2f(1) ∴f(1)=0,進(jìn)一步得到.
(2)不等式化為f(x)>f(x-3)+1
∵f(2)=1
∴f(x)>f(x-3)+f(2)=f(2x-6)
∵f(x)是(0,+∞)上的增函數(shù)
∴解得{x/3<x<6}
(1)【證明】 由題意得f(1)=f(1×1)=f(1)+f(1)=2f(1) ∴f(1)=0 3分
∴ 。。。6分
(2)【解】 不等式化為f(x)>f(x-3)+1
∵f(2)=1
∴f(x)>f(x-3)+f(2)=f(2x-6)
∵f(x)是(0,+∞)上的增函數(shù)
∴解得{x/3<x<6} 。。。。12分
考點(diǎn):本題主要是考查抽象函數(shù)單調(diào)性的運(yùn)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用和得到f(2)=1,進(jìn)而變形得到不等式的解集。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題13分)已知函數(shù)。
(Ⅰ)若,試判斷并證明的單調(diào)性;
(Ⅱ)若函數(shù)在上單調(diào),且存在使成立,求的取值范圍;
(Ⅲ)當(dāng)時(shí),求函數(shù)的最大值的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分)已知函數(shù)的一系列對(duì)應(yīng)值如下表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(10分)設(shè)是定義在上的單調(diào)增函數(shù),滿(mǎn)足,
,
求(1);
(2)若,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
本題12分)
已知函數(shù).
(1)求的定義域;
(2)在函數(shù)的圖象上是否存在不同的兩點(diǎn),使得過(guò)這兩點(diǎn)的直線(xiàn)平行于x軸;
(3)當(dāng),b滿(mǎn)足什么條件時(shí),在上恒取正值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義在上的奇函數(shù),當(dāng)時(shí),
(1)求在上的解析式;
(2)判斷在上的單調(diào)性,并給予證明;
(3)當(dāng)時(shí),關(guān)于的方程有解,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知函數(shù).
(1)若定義域內(nèi)存在,使不等式成立,求實(shí)數(shù)的最小值;
(2)若函數(shù)在區(qū)間上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)設(shè)函數(shù)(),.
(Ⅰ)令,討論的單調(diào)性;
(Ⅱ)關(guān)于的不等式的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)的取值范圍;
(Ⅲ)對(duì)于函數(shù)與定義域上的任意實(shí)數(shù),若存在常數(shù),使得和都成立,則稱(chēng)直線(xiàn)為函數(shù)與的“分界線(xiàn)”.設(shè),,試探究與是否存在“分界線(xiàn)”?若存在,求出“分界線(xiàn)”的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com