【題目】江心洲有一塊如圖所示的江邊,為岸邊,岸邊形成角,現(xiàn)擬在此江邊用圍網(wǎng)建一個(gè)江水養(yǎng)殖場(chǎng),有兩個(gè)方案:方案l:在岸邊上取兩點(diǎn),用長度為的圍網(wǎng)依托岸邊線圍成三角形兩邊為圍網(wǎng));方案2:在岸邊,上分別取點(diǎn),用長度為的圍網(wǎng)依托岸邊圍成三角形.請(qǐng)分別計(jì)算,面積的最大值,并比較哪個(gè)方案好.

【答案】,面積的最大值分別為,.其中方案.

【解析】

分別在三角形面積公式中應(yīng)用基本不等式、余弦定理中利用基本不等式計(jì)算出方案和方案面積的最大值,通過最大值的比較可知方案.

方案:設(shè),

由已知“用長度為的圍網(wǎng),,兩邊為圍網(wǎng)”得

當(dāng)且僅當(dāng)時(shí),等號(hào)成立

面積的最大值為

方案:設(shè)

中,由余弦定理得:

(當(dāng)且僅當(dāng)時(shí)等號(hào)成立)

(當(dāng)且僅當(dāng)時(shí)等號(hào)成立)

面積的最大值為

方案

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(.(12分)在一次購物抽獎(jiǎng)活動(dòng)中,假設(shè)某10張券中有一等獎(jiǎng)獎(jiǎng)券1張,可獲價(jià)值50元的獎(jiǎng)品;有二等獎(jiǎng)獎(jiǎng)券3張,每張可獲價(jià)值10元的獎(jiǎng)品;其余6張沒獎(jiǎng)。某顧客從此10張獎(jiǎng)券中任抽2張,求:

1)該顧客中獎(jiǎng)的概率;

2)該顧客獲得的獎(jiǎng)品總價(jià)值X(元)的概率分布列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】個(gè)人排成一排,在下列情況下,各有多少種不同排法?

1)甲不在兩端;

2)甲、乙、丙三個(gè)必須在一起;

3)甲、乙必須在一起,且甲、乙都不能與丙相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,,數(shù)列的前項(xiàng)和為,若對(duì)一切,恒有,則能取到的最大整數(shù)是( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,將收集的數(shù)據(jù)分成六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時(shí)間不低于40分鐘的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.

(1)請(qǐng)根據(jù)直方圖中的數(shù)據(jù)填寫下面的列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?

(2)現(xiàn)按照“課外體育達(dá)標(biāo)”與“課外體育不達(dá)標(biāo)”進(jìn)行分層抽樣,抽取8人,再從這8名學(xué)生中隨機(jī)抽取3人參加體育知識(shí)問卷調(diào)查,記“課外體育不達(dá)標(biāo)”的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)n為給定的大于2的整數(shù)。有n個(gè)外表上沒有區(qū)別的袋子,第k(k=1,2,···,n)個(gè)袋中有k個(gè)紅球,n-k個(gè)白球。將這些袋子混合后,任選一個(gè)袋子,并且從中連續(xù)取出三個(gè)球(每次取出不放回)。求第三次取出的為白球的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,向量與向量的夾角為,且.

(1)求向量;

(2)設(shè)向量,向量,其中,若,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,Fx軸正半軸上的一個(gè)動(dòng)點(diǎn).以F為焦點(diǎn)、O為頂點(diǎn)作拋物線C.設(shè)P為第一象限內(nèi)拋物線C上的一點(diǎn),Qx軸負(fù)半軸上一點(diǎn),使得PQ為拋物線C的切線,且.C1、C2均與直線OP切于點(diǎn)P,且均與x軸相切.求點(diǎn)F的坐標(biāo),使圓C1C2的面積之和取到最小值,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于,兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案