分析 (1)由題意求得c=-4,得到p=8,再由點(diǎn)M(-4,$\frac{9}{5}$)在橢圓上,結(jié)合隱含條件求得a,b的值,則橢圓方程和拋物線(xiàn)方程可求;
(2)由題意畫(huà)出圖形,由拋物線(xiàn)定義把|MN|+|NQ|的最小值轉(zhuǎn)化為|MF|求解.
解答 解:(1)∵$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1上的點(diǎn)M在拋物線(xiàn)y2=2px(p>0)的準(zhǔn)線(xiàn)l上,拋物線(xiàn)的焦點(diǎn)也是橢圓焦點(diǎn).
∴c=-4,p=8…①
∵M(jìn)(-4,$\frac{9}{5}$)在橢圓上,∴$\frac{16}{{a}^{2}}+\frac{81}{25^{2}}=1$…②
又∵a2=b2+c2…③
∴由①②③解得:a=5、b=3,
∴橢圓為$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$;
由p=8得拋物線(xiàn)為y2=16x.
(2)設(shè)橢圓焦點(diǎn)為F(4,0),由橢圓定義得|NQ|=|NF|,
∴|MN|+|NQ|=|MN|+|NF|≥|MF|=$\sqrt{(-4-4)^{2}+(\frac{9}{5}-0)^{2}}=\frac{41}{5}$,即為所求的最小值.
點(diǎn)評(píng) 本題考查橢圓與拋物線(xiàn)的簡(jiǎn)單性質(zhì),考查了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 9 | C. | 36 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{2\sqrt{13}}}{13}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{{\sqrt{7}}}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | [0,1] | C. | (0,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,3) | B. | [2,+∞) | C. | (2,3) | D. | [2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com