1.下列四個命題:
①“若xy=0,則x=0且y=0”的逆否命題;
②“正方形是菱形”的否命題;
③“若ac2>bc2,則a>b”的逆命題;
④若“m>1,則不等式x2-2x+m>0的解集為R”
其中假命題的序號是①②③.

分析 判斷原命題的真假,可得其逆否命題的真假,進(jìn)而判斷①;寫出原命題的否命題,并判斷真假,可判斷②;寫出原命題的逆命題,并判斷真假,可判斷③;根據(jù)二次函數(shù)的圖象和性質(zhì),可判斷④.

解答 解:①“若xy=0,則x=0且y=0”為假命題,故其逆否命題為假命題;
②“正方形是菱形”的否命題為“不是正方形則不是菱形”為假命題;
③“若ac2>bc2,則a>b”的逆命題為“若a>b,則ac2>bc2”,當(dāng)c=0不成立,故為假命題;
④若m>1,則△=4-4m<0,此時不等式x2-2x+m>0的解集為R,
故“若m>1,則不等式x2-2x+m>0的解集為R”為真命題;
故答案為:①②③

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,二次不等式恒成立問題,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖1,直角△ACD中,AD=2AC,AB是斜邊上的高,BE⊥AC,BF⊥AD,沿AB將△ACD折成棱錐A-BCD(圖2),且CD⊥BC.

(Ⅰ) DC⊥BE;
(Ⅱ) 求BF與平面ACD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,有一個內(nèi)角為30°,“∠A>30°”是“sinA>$\frac{1}{2}$”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線mx+2ny-4=0始終平分圓x2+y2-4x+2y-4=0的周長,則m、n的關(guān)系是( 。
A.m-n-2=0B.m+n-2=0C.m+n-4=0D.m-n+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=x3-$\frac{1}{x}$的導(dǎo)數(shù)是( 。
A.y′=3x2-$\frac{1}{{x}^{2}}$B.y′=3x2-$\frac{1}{x}$C.y′=3x2+$\frac{1}{{x}^{2}}$D.y′=3x2+$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1上有一點M(-4,$\frac{9}{5}$)在拋物線y2=2px(p>0)的準(zhǔn)線l上,拋物線的焦點也是橢圓焦點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點N在拋物線上,過N作準(zhǔn)線l的垂線,垂足為Q,求|MN|+|NQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x|x2-5x-6≤0},B={x|x-3a<0},
(Ⅰ)當(dāng)a=$\frac{1}{3}$時,求A∩B;
(Ⅱ)若A∩B≠∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=|x2-4x+3|,x∈R.
(1)在區(qū)間[0,4]上畫出函數(shù)f(x)的圖象;
(2)寫出該函數(shù)在R上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,|${\overrightarrow{BA}}$|=1,|${\overrightarrow{AC}}$|=2,且$\overrightarrow{BA}$與$\overrightarrow{AC}$的夾角為$\frac{2π}{3}$,則BC邊上的中線AD的長為$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案