【題目】隨著生活水平的提高,人們對空氣質(zhì)量的要求越來越高,某機(jī)構(gòu)為了解公眾對“車輛限行”的態(tài)度,隨機(jī)抽查,并將調(diào)查情況進(jìn)行整理后制成下表:

年齡(歲)

頻數(shù)

贊成人數(shù)

(1)世界聯(lián)合國衛(wèi)生組織規(guī)定: 歲為青年, 為中年,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫以下列聯(lián)表:

青年人

中年人

合計(jì)

不贊成

贊成

合計(jì)

(2)判斷能否在犯錯誤的概率不超過的前提下,認(rèn)為贊成“車柄限行”與年齡有關(guān)?

附: ,其中

獨(dú)立檢驗(yàn)臨界值表:

(3)若從年齡的被調(diào)查中各隨機(jī)選取人進(jìn)行調(diào)查,設(shè)選中的兩人中持不贊成“車輛限行”態(tài)度的人員為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

【答案】(1)見解析;(2)見解析;(3)見解析.

【解析】試題分析:(1)根據(jù)數(shù)據(jù)填寫列聯(lián)表;

(2)計(jì)算,對照數(shù)表即可得出結(jié)論;

3的可能取值為,分別計(jì)算概率即可.

試題解析:

(1)

青年人

中年人

合計(jì)

不贊成

贊成

合計(jì)

(2)由(1)表中數(shù)據(jù)得

. ,因此,在犯錯誤的概率不超過的前提下,認(rèn)為贊成“車輛限行”與年齡有關(guān).

3的可能取值為, ,

,所以隨機(jī)變量的分布列:

所以數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形地塊ABCE,AF、EC是兩條道路,其中AF是以A為頂點(diǎn)、AE所在直線為對稱軸的拋物線的一部分,EC是線段.AB=2km,BC=6km,AE=BF=4km.計(jì)劃在兩條道路之間修建一個公園, 公園形狀為直角梯形QPRE(其中線段EQ和RP為兩條底邊).記QP=x(km),公園面積為S(km2).
(Ⅰ)以A為坐標(biāo)原點(diǎn),AE所在直線為x軸建立平面直角坐標(biāo)系,求AF所在拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)求面積S(km2)關(guān)于x(km)的函數(shù)解析式;
(Ⅲ)求面積S(km2)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l:y=k(x+1)(k≠0)與橢圓3x2+y2=a2(a>0)相交于A、B兩個不同的點(diǎn),與x軸相交于點(diǎn)C,記O為坐標(biāo)原點(diǎn). (Ⅰ)證明:a2
(Ⅱ)若 ,求△OAB的面積取得最大值時的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)函數(shù)的圖象與軸交于兩點(diǎn), ,點(diǎn)在函數(shù)的圖象上,且為等腰直角三角形,記,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品原來每件售價為25元,年銷售量8萬件.
(Ⅰ)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收人不低于原收入,該商品每件定價最多為多少元?
(Ⅱ)為了擴(kuò)大該商品的影響力,提高年銷售量.公司決定明年對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價到x元.公司擬投入 (x2﹣600)萬元作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入 x萬元作為浮動宣傳費(fèi)用.試問:當(dāng)該商品明年的銷售量a至少應(yīng)達(dá)到多少萬件時,才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4x﹣a2x+1+a+1,a∈R.
(1)當(dāng)a=1時,解方程f(x)﹣1=0;
(2)當(dāng)0<x<1時,f(x)<0恒成立,求a的取值范圍;
(3)若函數(shù)f(x)有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}中,a2=2,a5=128.
(1)求通項(xiàng)an
(2)若bn=log2an , 數(shù)列{bn}的前n項(xiàng)和為Sn , 且Sn=360,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足:bnan1annN*).

1)若a11,bnn,求數(shù)列{an}的通項(xiàng)公式;

2)若bn1bn1bnn2),且b11,b22

)記cna6n1n1),求證:數(shù)列{cn}為等差數(shù)列;

)若數(shù)列中任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次,求首項(xiàng)a1應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】支籃球隊(duì)進(jìn)行單循環(huán)比賽(任兩支球隊(duì)恰進(jìn)行一場比賽),任兩支球隊(duì)之間勝率都是.單循環(huán)比賽結(jié)束,以獲勝的場次數(shù)作為該隊(duì)的成績,成績按從大到小排名次順序,成績相同則名次相同.有下列四個命題:

:恰有四支球隊(duì)并列第一名為不可能事件; :有可能出現(xiàn)恰有兩支球隊(duì)并列第一名;

:每支球隊(duì)都既有勝又有敗的概率為; :五支球隊(duì)成績并列第一名的概率為.

其中真命題是

A. ,, B. ,, C. .. D. ..

查看答案和解析>>

同步練習(xí)冊答案