1.已知集合M={x|x2-2x≤0},N={x|log2(x-1)<1},則M∪N=(  )
A.[0,3)B.[0,3]C.[1,2)D.[1,2]

分析 化簡(jiǎn)集合M,集合N,進(jìn)而根據(jù)集合并集運(yùn)算規(guī)則,求出結(jié)果.

解答 解:x2-2x≤0,解得0≤x≤2,即M=[0,2]
∵log2(x-1)<1,
∴0<x-1<2,
解得1<x<3,
∴M=(1,3),
∴M∪N=[0,3),
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是,集合的并集運(yùn)算,不等式的解法,其中求出集合M,N是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{ax}{e^x}$+b的圖象在點(diǎn)P(0,f(0))處的切線為y=x.
(1)求函數(shù)f(x)的解析式;
(2)若關(guān)于x的方程f(x)=k有兩個(gè)不等實(shí)根x1,x2,求實(shí)數(shù)k的取值范圍;
(3)在(2)的條件下,若x0=$\frac{{{x_1}+{x_2}}}{2}$,求證:f'(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若直線y=kx+b(b<0)是曲線y=ex-2的切線,也是曲線y=lnx的切線,則b=-1 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=an-$\frac{3}{2}$(n∈N*),Sn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1,則S10=-435.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AB⊥AD,AB=3,CD=2,PD=AD=5.E是PD上一點(diǎn).
(1)若PB∥平面ACE,求$\frac{PE}{ED}$的值;
(2)若E是PD中點(diǎn),過點(diǎn)E作平面α∥平面PBC,平面α與棱PA交于F,求三棱錐P-CEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知變量$f(x)=Asin(ωx+φ)\;(A>0,ω>0,|φ|<\frac{π}{2})$的最小值為-2,最小正周期為π,f(0)=1,則f(x)在區(qū)間[0,π]上的單調(diào)遞增區(qū)間為( 。
A.$[{0,\frac{π}{6}}]$B.$[{\frac{π}{6},\frac{2π}{3}}]$C.$[{\frac{2π}{3},π}]$D.$[{0,\frac{π}{6}}]$和$[{\frac{2π}{3},π}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題:
①若A、B、C、D是空間任意四點(diǎn),則有$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{DA}$=$\overrightarrow{0}$;
②$\overrightarrow$≠$\overrightarrow{0}$,則$\overrightarrow{a}$和$\overrightarrow$共線的充要條件是:?λ∈R,使$\overrightarrow{a}$=λ$\overrightarrow$;
③若$\overrightarrow{a}$和$\overrightarrow$共線,則$\overrightarrow{a}$與$\overrightarrow$所在直線平行;
④對(duì)空間任意一點(diǎn)O與不共線的三點(diǎn)A、B、C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(其中x、y、z∈R),且x+y+z=1,則P、A、B、C四點(diǎn)共面.則上述命題中正確命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知A={-2,-1,0,1,2},B={x|y=lg(2x+1)},則A∩B=(  )
A.B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)判斷下列各角是第幾象限角:
①606°②-950°
(2)寫出與-457°角終邊相同的角的集合,并指出它是第幾象限角.

查看答案和解析>>

同步練習(xí)冊(cè)答案