分析 (1)連結(jié)BD交AC于O,連結(jié)OE,則由PB∥平面ACE得PB∥OE,于是PEED=OBOD=ABCD;
(2)證明AD⊥平面PCD,做出F的位置得出F到平面PCD的距離與AD的關(guān)系,代入體積公式計(jì)算.
解答 解:(1)連結(jié)BD交AC于O,連結(jié)OE.
∵PB∥平面ACE,PB?平面PBD,平面ACE∩平面PBD=OE,
∴PB∥OE,
∴PEDE=OBOD,
又△AOB∽△COD,∴OBOD=ABCD=32.
∴PEDE=32.
(2)過(guò)E作EM∥PC交CD于M,過(guò)M作MN∥BC交AB于N,過(guò)N作NF∥PB交PA于F,連接EF.
則平面EFNM為平面α.
∵E為PD的中點(diǎn),∴M為CD的中點(diǎn),∴CM=12CD=1,
∴NB=CM=1,∴PFPA=BNAB=13.
∵PD⊥平面ABCD,AD?平面ABCD,
∴PD⊥AD,又AD⊥CD,PD?平面PCD,CD?平面PCD,PD∩CD=D,
∴AD⊥平面PCD,
∵PD=AD=5,PD⊥AD,∴PA=5√2,
∴F到平面PCE的距離h=13AD=53.
∴VP-CEF=VF-PCE=13S△PCE•h=13×12×52×2×53=2518.
點(diǎn)評(píng) 本題考查了線面平行的性質(zhì),棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -π+arcsin√24 | B. | -π-arcsin√24 | C. | -3π2+arcsin√24 | D. | -2π+arcsin√24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,3) | B. | [0,3] | C. | [1,2) | D. | [1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | √22 | B. | 1 | C. | √2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | S12 | B. | S7 | C. | S6 | D. | S1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com