Loading [MathJax]/jax/output/CommonHTML/jax.js
10.如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AB⊥AD,AB=3,CD=2,PD=AD=5.E是PD上一點(diǎn).
(1)若PB∥平面ACE,求PEED的值;
(2)若E是PD中點(diǎn),過(guò)點(diǎn)E作平面α∥平面PBC,平面α與棱PA交于F,求三棱錐P-CEF的體積.

分析 (1)連結(jié)BD交AC于O,連結(jié)OE,則由PB∥平面ACE得PB∥OE,于是PEED=OBOD=ABCD;
(2)證明AD⊥平面PCD,做出F的位置得出F到平面PCD的距離與AD的關(guān)系,代入體積公式計(jì)算.

解答 解:(1)連結(jié)BD交AC于O,連結(jié)OE.
∵PB∥平面ACE,PB?平面PBD,平面ACE∩平面PBD=OE,
∴PB∥OE,
PEDE=OBOD
又△AOB∽△COD,∴OBOD=ABCD=32
PEDE=32
(2)過(guò)E作EM∥PC交CD于M,過(guò)M作MN∥BC交AB于N,過(guò)N作NF∥PB交PA于F,連接EF.
則平面EFNM為平面α.
∵E為PD的中點(diǎn),∴M為CD的中點(diǎn),∴CM=12CD=1,
∴NB=CM=1,∴PFPA=BNAB=13
∵PD⊥平面ABCD,AD?平面ABCD,
∴PD⊥AD,又AD⊥CD,PD?平面PCD,CD?平面PCD,PD∩CD=D,
∴AD⊥平面PCD,
∵PD=AD=5,PD⊥AD,∴PA=52,
∴F到平面PCE的距離h=13AD=53
∴VP-CEF=VF-PCE=13SPCEh=13×12×52×2×53=2518

點(diǎn)評(píng) 本題考查了線面平行的性質(zhì),棱錐的體積計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)L為曲線C:y=lnxx在點(diǎn)(1,0)處的切線.
(1)求L的方程;
(2)證明:曲線C不可能在直線L的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知sinx=24,x∈(-3π2,-π),則x的值為( �。�
A.-π+arcsin24B.-π-arcsin24C.-3π2+arcsin24D.-2π+arcsin24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)={a1x+4x72ax6x7(a>0,a≠1),bn=f(n)(n∈N*),{bn}是遞減數(shù)列,則a的取值范圍(12,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=13x3+12(a-1)x2+bx(a,b為常數(shù)),在x=1和x=4處取得極值.
(1)求f(x);
(2)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合M={x|x2-2x≤0},N={x|log2(x-1)<1},則M∪N=( �。�
A.[0,3)B.[0,3]C.[1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若函數(shù)y1=x1lnx1,函數(shù)y2=x2-3,則x1x22+y1y22的最小值為( �。�
A.22B.1C.2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.等腰三角形一腰上的高是3,這條高與底邊的夾角為60°,則底邊長(zhǎng)為23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.等差數(shù)列{an}的前n項(xiàng)之和為Sn,已知a1>0,S12>0,S13<0,則S1,S2,S3,S4,…,S11,S12中最大的是( �。�
A.S12B.S7C.S6D.S1

查看答案和解析>>

同步練習(xí)冊(cè)答案