【題目】已知函數(shù)的定義域?yàn)?/span>,同時(shí)滿(mǎn)足:對(duì)任意,總有,對(duì)定義域內(nèi)的,若滿(mǎn)足,恒有成立,則函數(shù)稱(chēng)為“函數(shù)”.

1)判斷函數(shù)在區(qū)間上是否為“函數(shù)”,并說(shuō)明理由;

2)當(dāng)為“函數(shù)”時(shí),求的最大值和最小值;

3)已知為“函數(shù)”:

證明:;

證明:對(duì)一切,都有

【答案】1f(x)為“函數(shù)”,證明略;(2g(x)最小值為2,最大值為3;(3)①證明見(jiàn)解析;②證明見(jiàn)解析.

【解析】

1)欲判斷f(x)=2x+1 0≤x≤1)是不是“函數(shù)”,即看它是否滿(mǎn)足:x[0,1],f(x)≥2;f(1)=3;對(duì)定義域內(nèi)的,若滿(mǎn)足,恒有,一一驗(yàn)證即可;(2)先利用定義法研究函數(shù)g(x)的單調(diào)性,從而可求此函數(shù)的最值;(3)①題中條件:,令,得,利用它進(jìn)行放縮,可證得答案;②因?yàn)橛深}意可得:對(duì)x(01],總存在nN,滿(mǎn)足,結(jié)合由(1)和①得,又,從而可證得結(jié)論.

1)顯然f(x)=2x+1(0x1)滿(mǎn)足:x[0,1]f(x)2, f(1)=3;

x10,x20x1+x21,

成立,故為“函數(shù)”;

2)設(shè)x1,x2[0,1]x1<x2,則x2x1(0,1]

,

g(x2)g(x1)g(x2x1)20,

g(x1)g(x2),則當(dāng)0x1時(shí),g(x)單調(diào)遞增,即g(0)g(x)g(1),

中,令x1=x2=0,得(0)2,

,得g(0)2,∴g(0)=2,當(dāng)x=1時(shí),g(1)=3

∴當(dāng)x=0時(shí),g(x)取得最小值2,

當(dāng)x=1時(shí),g(x)取得最大值3;

3)①依題意,

,得

,

;

②對(duì)x(0,1],總存在nN,滿(mǎn)足,

由(1)和①得,又,

h(x)<2x+2

綜上所述,對(duì)一切x(0,1],都有h(x)<2x+2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其圖象關(guān)于直線(xiàn)對(duì)稱(chēng),為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點(diǎn)( )

A.先向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)保持不變

B.先向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)保持不變

C.先向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)保持不變

D.先向左平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)保持不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P到直線(xiàn)y=﹣4的距離比點(diǎn)P到點(diǎn)A0,1)的距離多3

(1)求點(diǎn)P的軌跡方程;

(2)經(jīng)過(guò)點(diǎn)Q0,2)的動(dòng)直線(xiàn)l與點(diǎn)P的軌交于MN兩點(diǎn),是否存在定點(diǎn)R使得∠MRQ=∠NRQ?若存在,求出點(diǎn)R的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在實(shí)數(shù),對(duì)任意實(shí)數(shù),使不等式恒成立,則實(shí)數(shù)的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年,教育部發(fā)文確定新高考改革正式啟動(dòng),湖南、廣東、湖北等8省市開(kāi)始實(shí)行新高考制度,從2018年下學(xué)期的高一年級(jí)學(xué)生開(kāi)始實(shí)行.為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測(cè)評(píng),在成績(jī)統(tǒng)計(jì)分析中,高二某班的數(shù)學(xué)成績(jī)的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:

1)求該班數(shù)學(xué)成績(jī)?cè)?/span>的頻率及全班人數(shù);

2)根據(jù)頻率分布直方圖估計(jì)該班這次測(cè)評(píng)的數(shù)學(xué)平均分;

3)若規(guī)定分及其以上為優(yōu)秀,現(xiàn)從該班分?jǐn)?shù)在分及其以上的試卷中任取份分析學(xué)生得分情況,求在抽取的份試卷中至少有份優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校進(jìn)行社會(huì)實(shí)踐,對(duì)歲的人群隨機(jī)抽取 1000 人進(jìn)行了一次是否開(kāi)通“微博”的調(diào)查,開(kāi)通“微博”的為“時(shí)尚族”,否則稱(chēng)為“非時(shí)尚族”.通過(guò)調(diào)查得到到各年齡段人數(shù)的頻率分布直方圖如圖所示,其中在歲, 歲年齡段人數(shù)中,“時(shí)尚族”人數(shù)分別占本組人數(shù)的、.

(1)求歲與歲年齡段“時(shí)尚族”的人數(shù);

(2)從歲和歲年齡段的“時(shí)尚族”中,采用分層抽樣法抽取6人參加網(wǎng)絡(luò)時(shí)尚達(dá)人大賽,其中兩人作為領(lǐng)隊(duì).求領(lǐng)隊(duì)的兩人年齡都在歲內(nèi)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為

1)求直線(xiàn)的普通方程及曲線(xiàn)的直角坐標(biāo)方程;

2)設(shè)直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.

(1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線(xiàn)性回歸模型擬合的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(若,則線(xiàn)性相關(guān)程度很高,可用線(xiàn)性回歸模型擬合);

(2)求關(guān)于的回歸方程,并預(yù)測(cè)液體肥料每畝使用量為12千克時(shí),西紅柿畝產(chǎn)量的增加量約為多少?

附:相關(guān)系數(shù)公式,參考數(shù)據(jù):,.

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)兩點(diǎn),且圓心在直線(xiàn)上.

(1)求圓的方程;

(2)已知過(guò)點(diǎn)的直線(xiàn)與圓相交截得的弦長(zhǎng)為,求直線(xiàn)的方程;

(3)已知點(diǎn),在平面內(nèi)是否存在異于點(diǎn)的定點(diǎn),對(duì)于圓上的任意動(dòng)點(diǎn),都有為定值?若存在求出定點(diǎn)的坐標(biāo),若不存在說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案