精英家教網 > 高中數學 > 題目詳情

【題目】某高校進行社會實踐,對歲的人群隨機抽取 1000 人進行了一次是否開通“微博”的調查,開通“微博”的為“時尚族”,否則稱為“非時尚族”.通過調查得到到各年齡段人數的頻率分布直方圖如圖所示,其中在歲, 歲年齡段人數中,“時尚族”人數分別占本組人數的、.

(1)求歲與歲年齡段“時尚族”的人數;

(2)從歲和歲年齡段的“時尚族”中,采用分層抽樣法抽取6人參加網絡時尚達人大賽,其中兩人作為領隊.求領隊的兩人年齡都在歲內的概率。

【答案】(1)歲的人數為240, 歲的人數為120;(2).

【解析】試題分析:1)根據頻率直方圖,求出歲與歲年齡段的人數,根據“時尚族”人數分別占本組人數的、,從而求出歲與歲年齡段“時尚族”的人數;

2)先由分層抽樣方法可得各個年齡段的人數,設、、歲中抽得的4人, 、歲中抽得的2人,進而用列舉法可得抽出2人的全部情況,由古典概型公式計算可得答案.

試題解析:1歲的人數為.

歲的人數為.

2)由(1)知歲中抽4人,記為、、、

歲中抽2人,記為、

則領隊兩人是、、、、、、、、、、l5種可能,其中兩人都在歲內的有6種,所以所求概率為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護意識,高二年級準備成立一個環(huán)境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護興趣小組,再從這10人的興趣小組中抽出4人參加學校的環(huán)保知識競賽.

(1)設事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;

(2)用表示抽取的4人中文科女生的人數,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在圖1所示的梯形中,于點,且.將梯形沿折起,使平面平面,如圖2所示,連接,取的中點.

(1)求證:平面平面;

(2)設,求幾何體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某足球俱樂部對“一線隊引援”和“青訓”投入分別規(guī)劃如下:2018年,該俱樂部在“一線隊引援”投入資金為16000萬元,“青訓”投入資金為1000萬元.計劃每年“一線隊引援”投入比上一年減少一半,“青訓”投入比上一年增加一倍.

1)請問哪一年該俱樂部“一線隊引援”和“青訓”投入總和最少?

2)從2018年起包括2018該俱樂部從哪一年開始“一線隊引援”和“青訓”總投入之和不低于62000萬元?(總投入是指各年投入之和)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的定義域為,同時滿足:對任意,總有,對定義域內的,若滿足,恒有成立,則函數稱為“函數”.

1)判斷函數在區(qū)間上是否為“函數”,并說明理由;

2)當為“函數”時,求的最大值和最小值;

3)已知為“函數”:

證明:

證明:對一切,都有

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修;坐標系與參數方程

在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,已知某圓的極坐標方程為:

)將極坐標方程化為普通方程;

)若點P(x,y)在該圓上,求xy的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在棱長為2的正方體中,,分別為棱、的中點,為棱上的一點,且,設點的中點,則點到平面的距離為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一次田徑比賽中,35名運動員的成績(單位:分鐘)的莖葉圖如圖所示。

若將運動員按成績由好到差編為135號,再用系統(tǒng)抽樣方法從中抽取5人,則其中成績在區(qū)間上的運動員人數為

A.6B.5C.4D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給定橢圓,稱圓心在坐標原點,半徑為的圓是橢圓的“伴橢圓”,若橢圓右焦點坐標為,且過點.

1)求橢圓的“伴橢圓”方程;

2)在橢圓的“伴橢圓”上取一點,過該點作橢圓的兩條切線,證明:兩線垂直;

3)在雙曲線上找一點作橢圓的兩條切線,分別交于切點、使得,求滿足條件的所有點的坐標.

查看答案和解析>>

同步練習冊答案