分析 (1)根據(jù)題意,$\left\{\begin{array}{l}{c=\sqrt{3}}\\{\frac{1}{{a}^{2}}+\frac{\frac{3}{4}}{^{2}}=1}\end{array}\right.$,求出a,b,即可求出橢圓C的方程;
(2)設(shè)直線AB的方程為y=kx,與橢圓方程聯(lián)立,求出A的坐標(biāo),同理可得點(diǎn)C的坐標(biāo),進(jìn)而表示出△ABD的面積,利用基本不等式,即可得出結(jié)論.
解答 解:(1)由題意,$\left\{\begin{array}{l}{c=\sqrt{3}}\\{\frac{1}{{a}^{2}}+\frac{\frac{3}{4}}{^{2}}=1}\end{array}\right.$,∴a=2,b=1,
∴橢圓C的方程:$\frac{{x}^{2}}{4}+{y}^{2}$=1;
(2)D在AB的垂直平分線上,∴OD:y=-$\frac{1}{k}$x.
$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,可得(1+4k2)x2=4,|AB|=2|OA|=2$\sqrt{{x}^{2}+{y}^{2}}$=4$\sqrt{\frac{{k}^{2}+1}{4{k}^{2}+1}}$,
同理可得|OC|=2$\sqrt{\frac{{k}^{2}+1}{{k}^{2}+4}}$,
則S△ABC=2S△OAC=|OA|×|OC|=$\frac{4(1+{k}^{2})}{\sqrt{(1+4{k}^{2})({k}^{2}+4)}}$.
由于$\sqrt{(1+4{k}^{2})({k}^{2}+4)}$≤$\frac{5(1+{k}^{2})}{2}$,
所以S△ABC=2S△OAC≥$\frac{8}{5}$,當(dāng)且僅當(dāng)1+4k2=k2+4,即k=±1時(shí)取等號(hào).△ABD的面積取最小值$\frac{8}{5}$.
直線AB的方程為y=x.
點(diǎn)評(píng) 本題考查橢圓的方程,考查直線與橢圓的位置關(guān)系,考查三角形面積的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,-1) | B. | $({-\frac{1}{16},0})$ | C. | $({\frac{1}{16},0})$ | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | λ=$\frac{2}{3}$,μ=$\frac{1}{9}$ | B. | λ=$\frac{1}{3}$,μ=$\frac{2}{9}$ | C. | λ=$\frac{2}{3}$,μ=$\frac{1}{3}$ | D. | λ=$\frac{2}{3}$,μ=$\frac{2}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com