分析 當(dāng)曲線上過(guò)點(diǎn)P的切線和直線x+y+1=0平行時(shí),點(diǎn)P到直線x+y+1=0的距離最小,求出曲線對(duì)應(yīng)的函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)值等于-1,可得切點(diǎn)的坐標(biāo),此切點(diǎn)到直線x+y+1=0的距離即為所求.
解答 解:當(dāng)過(guò)點(diǎn)P的切線和直線x+y+1=0平行時(shí),點(diǎn)P到直線x+y+1=0的距離最。
由題意可得,f′(x)=1-$\frac{2}{x}$=-1,
∴x=1,
∴f(1)=1,
∴曲線y=x-2lnx和直線x+y+1=0平行的切線經(jīng)過(guò)的切點(diǎn)坐標(biāo)(1,1),
點(diǎn)(1,1)到直線x+y+1=0的距離d=$\frac{|1+1+1|}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$,
∴P,Q兩點(diǎn)間的距離的最小值為$\frac{3\sqrt{2}}{2}$,
故答案為:$\frac{3\sqrt{2}}{2}$.
點(diǎn)評(píng) 本題考查點(diǎn)到直線的距離公式的應(yīng)用,函數(shù)的導(dǎo)數(shù)的求法及導(dǎo)數(shù)的意義,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,同時(shí)考查了分析問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20 | B. | 16 | C. | 12 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若a∥α,b∥α,則a∥b | B. | 若a∥α,b⊥α,則 a⊥b | ||
C. | 若a∥b,b∥α,則a∥α | D. | 若a⊥α,b∥β,則 α⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0,1,2} | B. | {-1,0,1} | C. | {0,1} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
宣傳費(fèi)x(單位:萬(wàn)元) | 3 | 2 | 1 | 5 | 4 |
銷售收益y(單位:萬(wàn)元) | 2 | 3 | 2 | 7 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (4,$\frac{5π}{6}$) | B. | (4,$\frac{2π}{3}$) | C. | (4,$\frac{5π}{3}$) | D. | (4,$\frac{11π}{6}$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com