1.已知點(diǎn)P是函數(shù)y=x-2lnx圖象上一點(diǎn),點(diǎn)Q是直線x+y+1=0上的動(dòng)點(diǎn),則PQ的最小值為$\frac{3\sqrt{2}}{2}$.

分析 當(dāng)曲線上過(guò)點(diǎn)P的切線和直線x+y+1=0平行時(shí),點(diǎn)P到直線x+y+1=0的距離最小,求出曲線對(duì)應(yīng)的函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)值等于-1,可得切點(diǎn)的坐標(biāo),此切點(diǎn)到直線x+y+1=0的距離即為所求.

解答 解:當(dāng)過(guò)點(diǎn)P的切線和直線x+y+1=0平行時(shí),點(diǎn)P到直線x+y+1=0的距離最。
由題意可得,f′(x)=1-$\frac{2}{x}$=-1,
∴x=1,
∴f(1)=1,
∴曲線y=x-2lnx和直線x+y+1=0平行的切線經(jīng)過(guò)的切點(diǎn)坐標(biāo)(1,1),
點(diǎn)(1,1)到直線x+y+1=0的距離d=$\frac{|1+1+1|}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$,
∴P,Q兩點(diǎn)間的距離的最小值為$\frac{3\sqrt{2}}{2}$,
故答案為:$\frac{3\sqrt{2}}{2}$.

點(diǎn)評(píng) 本題考查點(diǎn)到直線的距離公式的應(yīng)用,函數(shù)的導(dǎo)數(shù)的求法及導(dǎo)數(shù)的意義,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,同時(shí)考查了分析問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.?dāng)?shù)列{an}的前n項(xiàng)和Sn=n2-5n(n∈N*),若p-q=4,則ap-aq=( 。
A.20B.16C.12D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知直線a,b以及平面α,β,則下列命題正確的是( 。
A.若a∥α,b∥α,則a∥bB.若a∥α,b⊥α,則 a⊥b
C.若a∥b,b∥α,則a∥αD.若a⊥α,b∥β,則 α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.己知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a=2,且$\frac{sinA-sinB}{sinC}$=$\frac{c-b}{2+b}$.則△ABC面積的最大值$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)集合A={m∈Z|m≤-3或m≥2},B={n∈N|-1≤n<3},則B∩(∁ZA)=( 。
A.{0,1,2}B.{-1,0,1}C.{0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某公司為確定2017年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:萬(wàn)元)對(duì)年銷售收益y(單位:萬(wàn)元)的影響,2016年在若干地區(qū)各投入4萬(wàn)元的宣傳費(fèi),并將各地的銷售收益的數(shù)據(jù)作了初步處理,得到下面的頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計(jì)數(shù)的.
(Ⅰ)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度,并估計(jì)對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(Ⅱ)該公司按照類似的研究方法,測(cè)得一組數(shù)據(jù)如表所示:
宣傳費(fèi)x(單位:萬(wàn)元)32154
銷售收益y(單位:萬(wàn)元)23275
表中的數(shù)據(jù)顯示,y與x之間存在線性相關(guān)關(guān)系,求y關(guān)于x的回歸直線方程;
(Ⅲ)由(Ⅱ)知,當(dāng)宣傳費(fèi)投入為10萬(wàn)元時(shí),銷售收益大約為多少萬(wàn)元?
附:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.點(diǎn)P是圓(x+3)2+(y-1)2=2上的動(dòng)點(diǎn),點(diǎn)Q(2,2),O為坐標(biāo)原點(diǎn),則△OPQ面積的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.已知S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)令bn=lna3n+1,n=1,2,…,設(shè)數(shù)列{bn}的前n項(xiàng)和Tn.若$\frac{1}{T_1}+\frac{1}{T_2}+…+\frac{1}{T_n}<λ$對(duì)n∈N*恒成立求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.點(diǎn)M的直角坐標(biāo)(2$\sqrt{3}$,-2)化成極坐標(biāo)為( 。
A.(4,$\frac{5π}{6}$)B.(4,$\frac{2π}{3}$)C.(4,$\frac{5π}{3}$)D.(4,$\frac{11π}{6}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案