9.己知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,a=2,且$\frac{sinA-sinB}{sinC}$=$\frac{c-b}{2+b}$.則△ABC面積的最大值$\sqrt{3}$.

分析 由已知利用正弦定理可求b2+c2-a2=bc,進而利用余弦定理可求cosA=$\frac{1}{2}$,結(jié)合范圍A∈(0,π),可求A的值,進而利用余弦定理,基本不等式可求4≥bc,進而利用三角形面積公式即可計算得解.

解答 解:∵$\frac{sinA-sinB}{sinC}$=$\frac{c-b}{2+b}$,a=2,
∴$\frac{a-b}{c}$=$\frac{c-b}{a+b}$,整理可得:b2+c2-a2=bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$,
∴由余弦定理可得:4=b2+c2-bc≥2bc-bc=bc,當(dāng)且僅當(dāng)b=c時等號成立,
∴S△ABC=$\frac{1}{2}$bcsinA≤$\frac{1}{2}×4×\frac{\sqrt{3}}{2}$=$\sqrt{3}$,當(dāng)且僅當(dāng)b=c時等號成立,
則△ABC面積的最大值$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點評 本題主要考查了正弦定理,余弦定理,基本不等式,三角形面積公式在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別是F1、F2,離心率為$\frac{1}{2}$,以原點O為圓心,橢圓C的短半軸長為半徑的圓與直線x+$\sqrt{2}$y-3=0相切.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)動直線l;y=kx+m與橢圓C相切,分別過點F1、F2作直線垂直于l,垂足分別為D、E,求|F1D|+|F2E|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點,點B是短軸頂點,直線BF2與橢圓C相交于另一點D.若△F1BD是等腰三角形,則橢圓C的離心率為( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法正確的個數(shù)是( 。
(1)若p∧q為假命題,則p,q均為假命題
(2)已知直線α,β,平面α,β,且a⊥α,b?β,則“a⊥b”是“α∥β”的必要不充分條件
(3)命題“若a≥b,則a2≥b2”的逆否命題為“若a2≤b2,則a≤b”
(4)命題“?x0∈(0,+∞),使lnx0=x0-2”的否定是“?x∈(0,+∞),lnx≠x-2”
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow{a}$,$\overrightarrow$是兩個向量,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,若在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,D為BC中點,則AD的長為( 。
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知O為正△ABC內(nèi)的一點,且滿足$\overrightarrow{OA}+λ\overrightarrow{OB}+(1+λ)\overrightarrow{OC}=\overrightarrow 0$,若△OAB的面積與△OBC的面積的比值為3,則λ的值為( 。
A.$\frac{1}{2}$B.$\frac{5}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知點P是函數(shù)y=x-2lnx圖象上一點,點Q是直線x+y+1=0上的動點,則PQ的最小值為$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,a=5,B=45°,C=105°,解三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在四棱錐P-ABCE中,PA⊥底面ABCE,CD⊥AE,AC平分∠BAD,G為PC的中點,PA=AD=2,BC=DE,AB=3,CD=2$\sqrt{3}$,F(xiàn),M分別為BC,EG上一點,且AF∥CD.
(1)求$\frac{ME}{MG}$的值,使得CM∥平面AFG;
(2)過點E作平面PCD的垂線,垂足為H,求四棱錐H-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊答案