【題目】2020年春季,某出租汽車公司決定更換一批新的小汽車以代替原來報(bào)廢的出租車,現(xiàn)有采購成本分別為萬元/輛和萬元/輛的兩款車型,根據(jù)以往這兩種出租車車型的數(shù)據(jù),得到兩款出租車車型使用壽命頻數(shù)表如下:

使用壽命年數(shù)

5

6

7

8

總計(jì)

型出租車()

10

20

45

25

100

型出租車()

15

35

40

10

100

1)填寫下表,并判斷是否有的把握認(rèn)為出租車的使用壽命年數(shù)與汽車車型有關(guān)?

使用壽命不高于

使用壽命不低于

總計(jì)

總計(jì)

2)從的車型中各隨機(jī)抽取車,以表示這車中使用壽命不低于年的車數(shù),求的分布列和數(shù)學(xué)期望;

3)根據(jù)公司要求,采購成本由出租公司負(fù)責(zé),平均每輛出租車每年上交公司萬元,其余維修和保險(xiǎn)等費(fèi)用自理.假設(shè)每輛出租車的使用壽命都是整數(shù)年,用頻率估計(jì)每輛出租車使用壽命的概率,分別以這輛出租車所產(chǎn)生的平均利潤作為決策依據(jù),如果你是該公司的負(fù)責(zé)人,會(huì)選擇采購哪款車型?

附:,.

0.050

0.010

0.001

3.841

6.635

10.828

【答案】1)列聯(lián)表見解析;有的把握認(rèn)為出租車的使用壽命年數(shù)與汽車車型有關(guān)(2)分布列見解析;3)會(huì)選擇采購款車型

【解析】

1)根據(jù)題意完善列聯(lián)表,并由公式計(jì)算值,對(duì)比臨界值表即可判斷.

2)根據(jù)題意分別求得型車和型車使用壽命不低于年及低于年的概率,可能的取值為,即可由獨(dú)立事件概率乘法公式分別求得各概率得分布列和數(shù)學(xué)期望.

3)用頻率估計(jì)概率,分別計(jì)算兩種車型的平均利潤,即可做出選擇.

1)填表如下:

使用壽命不高于

使用壽命不低于

總計(jì)

30

70

100

50

50

100

總計(jì)

80

120

200

由列聯(lián)表可知,

故有的把握認(rèn)為出租車的使用壽命年數(shù)與汽車車型有關(guān).

2)由題意可知,型車使用壽命不低于年的車數(shù)占,低于年的車數(shù)占;型車使用壽命不低于年的車數(shù)占,低于年的車數(shù)占.可能的取值為.

,

的分布列為:

0

1

2

其數(shù)學(xué)期望.

3)用頻率估計(jì)概率,這款出租車的平均利潤為:

(萬元),

款出租車的平均利潤為:

(萬元),

故會(huì)選擇采購款車型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線表示兩和不同的直線,則的充要條件是(

A.存在直線,使,B.存在平面,使

C.存在平面,使D.存在直線,使與直線所成的角都是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線上三個(gè)不同的點(diǎn),且.

(Ⅰ)若,求點(diǎn)的坐標(biāo);

(Ⅱ)若拋物線上存在點(diǎn),使得線段總被直線平分,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形是底角為的等腰梯形,且,沿直線翻折成,所成二面角的平面角為,則(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,的對(duì)邊分別為,且成等差數(shù)列.

1)求的值;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓,橢圓上一點(diǎn)到左焦點(diǎn)的距離的取值范圍為.

1)求橢圓的方程;

2,分別與橢圓相切,且,,如圖,,,圍成的矩形的面積記為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在極坐標(biāo)系中,,,弧,,所在圓的圓心分別為,,,曲線是弧,曲線是弧,曲線是弧

1)寫出曲線,的極坐標(biāo)方程;

2)曲線,,構(gòu)成,若曲線的極坐標(biāo)方程為,,),寫出曲線與曲線的所有公共點(diǎn)(除極點(diǎn)外)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

1)求函數(shù)的值域;

2)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;

3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C).若,,,四點(diǎn)中有且僅有三點(diǎn)在橢面C上.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)O為坐標(biāo)原點(diǎn),F為橢圓C的右焦點(diǎn),過點(diǎn)F的直線l分別與橢圓C交于M,N兩點(diǎn),,求證:直線關(guān)于x軸對(duì)稱.

查看答案和解析>>

同步練習(xí)冊答案