【題目】2020年春季,某出租汽車公司決定更換一批新的小汽車以代替原來報(bào)廢的出租車,現(xiàn)有采購成本分別為萬元/輛和萬元/輛的兩款車型,根據(jù)以往這兩種出租車車型的數(shù)據(jù),得到兩款出租車車型使用壽命頻數(shù)表如下:
使用壽命年數(shù) | 5年 | 6年 | 7年 | 8年 | 總計(jì) |
型出租車(輛) | 10 | 20 | 45 | 25 | 100 |
型出租車(輛) | 15 | 35 | 40 | 10 | 100 |
(1)填寫下表,并判斷是否有的把握認(rèn)為出租車的使用壽命年數(shù)與汽車車型有關(guān)?
使用壽命不高于年 | 使用壽命不低于年 | 總計(jì) | |
型 | |||
型 | |||
總計(jì) |
(2)從和的車型中各隨機(jī)抽取車,以表示這車中使用壽命不低于年的車數(shù),求的分布列和數(shù)學(xué)期望;
(3)根據(jù)公司要求,采購成本由出租公司負(fù)責(zé),平均每輛出租車每年上交公司萬元,其余維修和保險(xiǎn)等費(fèi)用自理.假設(shè)每輛出租車的使用壽命都是整數(shù)年,用頻率估計(jì)每輛出租車使用壽命的概率,分別以這輛出租車所產(chǎn)生的平均利潤作為決策依據(jù),如果你是該公司的負(fù)責(zé)人,會(huì)選擇采購哪款車型?
附:,.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(1)列聯(lián)表見解析;有的把握認(rèn)為出租車的使用壽命年數(shù)與汽車車型有關(guān)(2)分布列見解析;(3)會(huì)選擇采購款車型
【解析】
(1)根據(jù)題意完善列聯(lián)表,并由公式計(jì)算值,對(duì)比臨界值表即可判斷.
(2)根據(jù)題意分別求得型車和型車使用壽命不低于年及低于年的概率,可能的取值為,即可由獨(dú)立事件概率乘法公式分別求得各概率得分布列和數(shù)學(xué)期望.
(3)用頻率估計(jì)概率,分別計(jì)算兩種車型的平均利潤,即可做出選擇.
(1)填表如下:
使用壽命不高于年 | 使用壽命不低于年 | 總計(jì) | |
型 | 30 | 70 | 100 |
型 | 50 | 50 | 100 |
總計(jì) | 80 | 120 | 200 |
由列聯(lián)表可知,
故有的把握認(rèn)為出租車的使用壽命年數(shù)與汽車車型有關(guān).
(2)由題意可知,型車使用壽命不低于年的車數(shù)占,低于年的車數(shù)占;型車使用壽命不低于年的車數(shù)占,低于年的車數(shù)占.且可能的取值為.
,
,
,
的分布列為:
0 | 1 | 2 | |
其數(shù)學(xué)期望.
(3)用頻率估計(jì)概率,這輛款出租車的平均利潤為:
(萬元),
這輛款出租車的平均利潤為:
(萬元),
故會(huì)選擇采購款車型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直線表示兩和不同的直線,則的充要條件是( )
A.存在直線,使,B.存在平面,使,
C.存在平面,使,D.存在直線,使與直線所成的角都是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線上三個(gè)不同的點(diǎn),且.
(Ⅰ)若,求點(diǎn)的坐標(biāo);
(Ⅱ)若拋物線上存在點(diǎn),使得線段總被直線平分,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓,橢圓上一點(diǎn)到左焦點(diǎn)的距離的取值范圍為.
(1)求橢圓的方程;
(2),,,分別與橢圓相切,且,,,如圖,,,,圍成的矩形的面積記為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在極坐標(biāo)系中,,,弧,,所在圓的圓心分別為,,,曲線是弧,曲線是弧,曲線是弧.
(1)寫出曲線,,的極坐標(biāo)方程;
(2)曲線由,,構(gòu)成,若曲線的極坐標(biāo)方程為(,,,),寫出曲線與曲線的所有公共點(diǎn)(除極點(diǎn)外)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的值域;
(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:().若,,,四點(diǎn)中有且僅有三點(diǎn)在橢面C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),F為橢圓C的右焦點(diǎn),過點(diǎn)F的直線l分別與橢圓C交于M,N兩點(diǎn),,求證:直線,關(guān)于x軸對(duì)稱.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com