【題目】已知橢圓G:,過點(diǎn)A(0,5),B(﹣8,﹣3),C、D在該橢圓上,直線CD過原點(diǎn)O,且在線段AB的右下側(cè).
(1)求橢圓G的方程;
(2)求四邊形ABCD 的面積的最大值.
【答案】(1);(2)
【解析】
試題分析:(1)先將點(diǎn)A(0,5),B(-8,3),代入橢圓的方程解得:a=10 b=5,最后寫出橢圓G的方程;(2)連OB,則四邊形ABCD的面積,分別表示A,B到直線CD的距離,設(shè)CD:-kx+y=0,代入橢圓方程消去y得到關(guān)于x的一元二次方程,再結(jié)合求根公式即可求得四邊形ABCD的面積,最后結(jié)合基本不等式求最大值,從而解決問題
試題解析:(1)將點(diǎn)A(0,5),B(﹣8,﹣3)代入橢圓G 的方程解得:
,解得:a2=100,b2=25.
∴橢圓G的方程為:;
(2)連結(jié)OB,
則,---7分
其中dA,dB分別表示點(diǎn)A,點(diǎn)B 到直線CD 的距離.
設(shè)直線CD方程為y =kx,代入橢圓方程,得x2+4k2x2﹣100=0,
解得:,
∴,
又,,
則
=.
當(dāng)且僅當(dāng)k=1時(shí) 取等號(hào)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面α和β,在平面α內(nèi)任取一條直線a,在β內(nèi)總存在直線b∥a,則α與β的位置關(guān)系是____(填“平行”或“相交”).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵.記鮭魚的游速為,鮭魚的耗氧量的單位數(shù)為,研究中發(fā)現(xiàn)與成正比,且當(dāng)時(shí), .
(1)求出關(guān)于的函數(shù)解析式;
(2)計(jì)算一條鮭魚的游速是時(shí)耗氧量的單位數(shù);
(3)當(dāng)鮭魚的游速增加時(shí),其耗氧量是原來的幾倍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是直角梯形,,,,側(cè)面底面,且是以為底的等腰三角形.
(Ⅰ)證明:
(Ⅱ)若四棱錐的體積等于.問:是否存在過點(diǎn)的平面分別交,于點(diǎn),使得平面平面?若存在,求出的面積;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與圓C:相交于A,B兩點(diǎn),弦AB中點(diǎn)為M(0,1),
(1)求實(shí)數(shù)的取值范圍以及直線的方程;
(2)若圓C上存在四個(gè)點(diǎn)到直線的距離為,求實(shí)數(shù)a的取值范圍;
(3)已知N(0,﹣3),若圓C上存在兩個(gè)不同的點(diǎn)P,使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)家劉徽是公元三世紀(jì)世界上最杰出的數(shù)學(xué)家,他在《九章算術(shù)圓田術(shù)》注中,用割圓術(shù)證明了圓面積的精確公式,并給出了計(jì)算圓周率的科學(xué)方法.所謂“割圓術(shù)”,即通過圓內(nèi)接正多邊形細(xì)割圓,并使正多邊形的周長(zhǎng)無限接近圓的周長(zhǎng),進(jìn)而來求得較為精確的圓周率(圓周率指圓周長(zhǎng)與該圓直徑的比率).劉徽計(jì)算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個(gè)全等的正三角形,每個(gè)三角形的邊長(zhǎng)均為圓的半徑
,此時(shí)圓內(nèi)接正六邊形的周長(zhǎng)為
,此時(shí)若將圓內(nèi)接正六邊形的周長(zhǎng)等同于圓的周長(zhǎng),可得圓周率為3,當(dāng)用正二十四邊形內(nèi)接于圓時(shí),按照上述算法,可得圓周率為__________.(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
.
(1)求
在
處的切線方程;
(2)令
,求
的單調(diào)區(qū)間;
(3)若任意
且
,都有
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列5個(gè)命題中正確命題的個(gè)數(shù)是( )
①對(duì)于命題p:x∈R,使得x2+x+1<0,則綈p:x∈R,均有x2+x+1>0;
②m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;
③已知回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為(4,5),則線性回歸方程為=1.23x+0.08;
④若實(shí)數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為;
⑤曲線y=x2與y=x所圍成圖形的面積是S= (x-x2)dx.
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy上取兩個(gè)定點(diǎn) 再取兩個(gè)動(dòng)點(diǎn),,且.
(Ⅰ)求直線與交點(diǎn)M的軌跡C的方程;
(Ⅱ)過的直線與軌跡C交于P,Q,過P作軸且與軌跡C交于另一點(diǎn)N,F為軌跡C的右焦點(diǎn),若,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com