函數(shù)y=f(x)定義在[-2,3]上,則函數(shù)y=f(x)圖象與直線x=2的交點(diǎn)個(gè)數(shù)有


  1. A.
    0個(gè)
  2. B.
    1個(gè)
  3. C.
    2個(gè)
  4. D.
    不能確定
B
分析:根據(jù)函數(shù)的定義進(jìn)行判斷,自變量在函數(shù)的定義域內(nèi)任取一個(gè)值,都有唯一一個(gè)確定的函數(shù)值與之對(duì)應(yīng).
解答:按照函數(shù)的定義,自變量在函數(shù)的定義域內(nèi)任取一個(gè)值,都有唯一一個(gè)確定的函數(shù)值與之對(duì)應(yīng),
故函數(shù)y=f(x)在定義域[-2,3]上,圖象與直線x=2的交點(diǎn)個(gè)數(shù)有一個(gè),故選 B.
點(diǎn)評(píng):本題考查函數(shù)的定義,構(gòu)成函數(shù)的三要素.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)定義在R上,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),0<f(x)<1
(1)求證:f(0)=1且當(dāng)x<0時(shí),f(x)>1
(2)求證:f(x)在R上是減函數(shù);
(3)設(shè)集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、設(shè)函數(shù)y=f(x)定義在實(shí)數(shù)集上,則函數(shù)y=f(x-1)與y=f(1-x)的圖象關(guān)于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)定義在R上單調(diào)遞減且f(0)≠0,對(duì)任意實(shí)數(shù)m、n,恒有f(m+n)=f(m)•f(n),集合A={(x,y)|f(x2)•f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=φ,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)定義在R上,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)•f(n)且當(dāng)x>0時(shí),0<f(x)<1
(1)求證:f(0)=1 且當(dāng)x<0時(shí),f(x)>1
(2)求證:f(x)在R上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

奇函數(shù)y=f(x)定義在[-1,1]上,且是減函數(shù),若f(1-a)+f(1-2a)>0,則實(shí)數(shù)a的取值范圍是
2
3
<a≤1
2
3
<a≤1

查看答案和解析>>

同步練習(xí)冊(cè)答案