已知直線l⊥平面α,直線m?平面β,有下面四個命題:
(1)α∥β⇒l⊥m,(2)α⊥β⇒l∥m,
(3)l∥m⇒α⊥β,(4)l⊥m⇒α∥β,
其中正確命題是( )
A.(1)與(2)
B.(1)與(3)
C.(2)與(4)
D.(3)與(4)
【答案】分析:根據已知直線l⊥平面α,直線m?平面β,結合α∥β結合線面垂直的定義及判定,易判斷(1)的真假;結合α⊥β,結合空間直線與直線關系的定義,我們易判斷(2)的對錯;結合l∥m,根據線面垂直的判定方法及面面平行的判定定理,易判斷(3)的正誤;再根據l⊥m結合空間兩個平面之間的位置關系,易得到(4)的真假,進而得到答案.
解答:解:∵直線l⊥平面α,α∥β,∴l(xiāng)⊥平面β,又∵直線m?平面β,∴l(xiāng)⊥m,故(1)正確;
∵直線l⊥平面α,α⊥β,∴l(xiāng)∥平面β,或l?平面β,又∵直線m?平面β,∴l(xiāng)與m可能平行也可能相交,還可以異面,故(2)錯誤;
∵直線l⊥平面α,l∥m,∴m⊥α,∵直線m?平面β,∴α⊥β,故(3)正確;
∵直線l⊥平面α,l⊥m,∴m∥α或m?α,又∵直線m?平面β,則α與β可能平行也可能相交,故(4)錯誤;
故選B.
點評:本題考查的知識點是空間中直線與平面之間的位置關系,其中熟練掌握空間中直線與平面位置關系的判定及性質定理,建立良好的空間想像能力是解答本題的關鍵.