【題目】解不等式
(1)x2﹣3x﹣4<0
(2)x2﹣x﹣6>0.
【答案】
(1)解:由x2﹣3x﹣4<0,得(x+1)(x﹣4)<0,
解得:﹣1<x<4.∴不等式x2﹣3x﹣4<0的解集為(﹣1,4);
(2)解:由x2﹣x﹣6>0,得(x+2)(x﹣3)>0,
解得:x<﹣2或x>3.
∴不等式x2﹣x﹣6>0的解集為(﹣∞,﹣2)∪(3,+∞).
【解析】把原題中兩個一元二次不等式因式分解得答案.
【考點精析】解答此題的關鍵在于理解解一元二次不等式的相關知識,掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊.
科目:高中數(shù)學 來源: 題型:
【題目】某化工廠生產(chǎn)的某種化工產(chǎn)品,當年產(chǎn)量在150噸至250噸之間,其生產(chǎn)的總成本y(萬元)與年產(chǎn)量x(噸)之間的函數(shù)關系式可近似地表示為
問:
(1)年產(chǎn)量為多少噸時,每噸的平均成本最低?并求出最低成本?
(2)若每噸平均出廠價為16萬元,則年產(chǎn)量為多少噸時,可獲得最大利潤?并求出最大利潤?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有一塊矩形空地,要在這塊空地上辟一個內(nèi)接四邊形為綠地,使其四個頂點分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設AE=x,綠地面積為y.
(1)寫出y關于x的函數(shù)關系式,并指出這個函數(shù)的定義域.
(2)當AE為何值時,綠地面積最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過長期觀測得到:在交通繁忙的時段內(nèi),某公路段汽車的車流量y(千輛/小時)與汽車的平均速度υ(千米/小時)之間的函數(shù)關系為:y= (υ>0).
(1)在該時段內(nèi),當汽車的平均速度υ為多少時,車流量最大?最大車流量為多少?(保留分數(shù)形式)
(2)若要求在該時段內(nèi)車流量超過10千輛/小時,則汽車的平均速度應在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017廣西5月考前聯(lián)考】寶寶的健康成長是媽媽們最關心的問題,父母親為嬰兒選擇什么品牌的奶粉一直以來都是育嬰中的一個重要話題,為了解過程奶粉的知名度和消費者的信任度,某調(diào)查小組特別調(diào)查記錄了某大型連鎖超市2015年與2016年這兩年銷售量前5名的五個品牌奶粉的銷量(單位:罐),繪制如下的管狀圖:
(1)根據(jù)給出的這兩年銷量的管狀圖,對該超市這兩年品牌奶粉銷量的前五強進行排名;
(2)分別計算這5個品牌奶粉2016年所占總銷量(僅指這5個品牌奶粉的總銷量)的百分比(百分數(shù)精確到各位),并將數(shù)據(jù)填入如下餅狀圖中的括號內(nèi);
(3)試以(2)中的百分比作為概率,若隨機選取2名購買這5個品牌中任意1個品牌的消費者進行采訪,記為被采訪中購買飛鶴奶粉的人數(shù),求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017四川資陽4月模擬】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務區(qū)等場所提供的自行車單車共享服務,由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100]分成5組,制成如圖所示頻率分直方圖.
(Ⅰ)求圖中的值;
(Ⅱ)已知滿意度評分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評分值為[90,100]的人中隨機抽取4人進行座談,設其中的女生人數(shù)為隨機變量X,求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) (a>0,a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)的奇偶性;
(3)求a的取值范圍,使f(x)+f(2x)>0在其定義域上恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列{an}的首項為1,公比為q,它的前n項和為Sn;
(1)若S3=3,S6=﹣21,求公比q;
(2)若q>0,且Tn=a1+a3+…+a2n﹣1 , 求 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【南通市、泰州市2017屆高三第一次調(diào)研測試】(本題滿分14分)如圖,在平面直角坐標系中,已知橢圓的離心率為,焦點到相應準線的距離為1.
(1)求橢圓的標準方程;
(2)若P為橢圓上的一點,過點O作OP的垂線交直線
于點Q,求的值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com