【題目】某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之間,其生產(chǎn)的總成本y(萬(wàn)元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系式可近似地表示為
問(wèn):
(1)年產(chǎn)量為多少?lài)崟r(shí),每噸的平均成本最低?并求出最低成本?
(2)若每噸平均出廠價(jià)為16萬(wàn)元,則年產(chǎn)量為多少?lài)崟r(shí),可獲得最大利潤(rùn)?并求出最大利潤(rùn)?

【答案】
(1)解:設(shè)每噸的平均成本為W(萬(wàn)元/T),

則W= = + ﹣30≥2 ﹣30=10,

當(dāng)且僅當(dāng) = ,x=200(T)時(shí)每噸平均成本最低,且最低成本為10萬(wàn)元


(2)解:設(shè)年利潤(rùn)為u(萬(wàn)元),

則u=16x﹣( ﹣30x+4000)=﹣ +46x﹣4000=﹣ (x﹣230)2+1290.

所以當(dāng)年產(chǎn)量為230噸時(shí),最大年利潤(rùn)1290萬(wàn)元


【解析】(1)利用總成本除以年產(chǎn)量表示出平均成本,利用基本不等式求出平均成本的最小值.(2)利用收入減去總成本表示出年利潤(rùn),通過(guò)配方求出二次函數(shù)的對(duì)稱(chēng)軸,由于開(kāi)口向下,對(duì)稱(chēng)軸處取得最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù), 是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.

1)求的值;

2)求的單調(diào)區(qū)間;

3)設(shè),其中的導(dǎo)函數(shù).證明:對(duì)任意,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知中心在原點(diǎn),離心率為的橢圓的一個(gè)焦點(diǎn)為圓 的圓心.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓上一點(diǎn),過(guò)作兩條斜率之積為的直線, ,當(dāng)直線, 都與圓相切時(shí),求的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了估計(jì)某校的一次數(shù)學(xué)考試情況,現(xiàn)從該校參加考試的600名學(xué)生中隨機(jī)抽出60名學(xué)生,其成績(jī)(百分制)均在[40,100)上,將這些成績(jī)分成六段[40,50),[50,60)…[90,100),后得到如圖所示部分頻率分布直方圖.

(1)求抽出的60名學(xué)生中分?jǐn)?shù)在[70,80)內(nèi)的人數(shù);
(2)若規(guī)定成績(jī)不小于85分為優(yōu)秀,則根據(jù)頻率分布直方圖,估計(jì)該校優(yōu)秀人數(shù).
(3)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中, , 的中點(diǎn).

(1)證明: 平面;

(2)若,點(diǎn)在平面的射影在上,且側(cè)面的面積為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且的離心率為.

(1)求的方程;

(2)過(guò)的頂點(diǎn)作兩條互相垂直的直線與橢圓分別相交于兩點(diǎn).若的角平分線方程為,求的面積及直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x2﹣2|x|﹣1(﹣3≤x≤3),
(1)畫(huà)出這個(gè)函數(shù)的圖象;
(2)指出函數(shù)f(x)的單調(diào)區(qū)間,并說(shuō)明在各個(gè)單調(diào)區(qū)間上f(x)是增函數(shù)還是減函數(shù);
(3)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足:對(duì)任意的x1 , x2∈R(x1≠x2),有 <0,則(
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式
(1)x2﹣3x﹣4<0
(2)x2﹣x﹣6>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案