【題目】如圖所示,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,BC=CC1 , M、N分別為BB1、A1C1的中點.
(Ⅰ)求證:CB1⊥平面ABC1
(Ⅱ)求證:MN∥平面ABC1

【答案】解:(Ⅰ)在直三棱柱ABC﹣A1B1C1中,

側(cè)面BB1C1C⊥底面ABC,且側(cè)面BB1C1C∩底面ABC=BC,

∵∠ABC=90°,即AB⊥BC,

∴AB⊥平面BB1C1

∵CB1平面BB1C1C,∴AB⊥CB1

∵BC=CC1,CC1⊥BC,∴BCC1B1是正方形,

∴CB1⊥BC1

∵AB∩BC1=B,∴CB1⊥平面ABC1

(Ⅱ)取AC1的中點F,連BF、NF.

在△AA1C1中,N、F是中點,

∴NF AA1,

又∵正方形BCC1B1中BM AA1,

∴NF∥BM,且NF=BM

故四邊形BMNF是平行四邊形,可得MN∥BF,

∵BF面ABC1,MN平面ABC1

∴MN∥面ABC1


【解析】(I)根據(jù)直三棱柱的性質(zhì),利用面面垂直性質(zhì)定理證出AB⊥平面BB1C1,得出AB⊥CB1.正方形BCC1B1中,對角線CB1⊥BC1,由線面垂直的判定定理可證出CB1⊥平面ABC1;(II)取AC1的中點F,連BF、NF,利用三角形中位線定理和平行四邊形的性質(zhì),證出EF∥BM且EF=BM,從而得到BMNF是平行四邊形,可得MN∥BF,結(jié)合線面平行判定定理即可證出MN∥面ABC1
【考點精析】關(guān)于本題考查的直線與平面平行的判定和直線與平面垂直的判定,需要了解平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學思想才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重,大氣污染可引起心悸、呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機的對入院50人進行了問卷調(diào)查,得到如下的列聯(lián)表.

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認為患心肺疾病與性別有關(guān)?說明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3名進行其它方面的排查,記選出患胃病的女性人數(shù)為ξ,求ξ的分布列、數(shù)學期望以及方差.
下面的臨界值表僅供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知x,y滿足約束條件 ,若z=ax+y的最大值為4,則a=(
A.3
B.2
C.﹣2
D.﹣3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= ﹣2sinπx(﹣3≤x≤5)的所有零點之和等于(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,A,B,C三點滿足 = + . (Ⅰ)求證:A,B,C三點共線;
(Ⅱ)已知A(1,cosx),B(1+sinx,cosx),x∈[0, ],f(x)= ﹣(2m2+ )| |的最小值為 ,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,A,B,C的坐標分別為(﹣ ,0),( ,0),(m,n),G,O′,H分別為△ABC的重心,外心,垂心.

(1)寫出重心G的坐標;
(2)求外心O′,垂心H的坐標;
(3)求證:G,H,O′三點共線,且滿足|GH|=2|OG′|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣ . (Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)用函數(shù)單調(diào)性的定義證明:f(x)在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(﹣2,0),B(2,0),P(x0 , y0)是直線y=x+3上任意一點,以A,B為焦點的橢圓過P,記橢圓離心率e關(guān)于x0的函數(shù)為e(x0),那么下列結(jié)論正確的是(
A.e與x0一一對應
B.函數(shù)e(x0)無最小值,有最大值
C.函數(shù)e(x0)是增函數(shù)
D.函數(shù)e(x0)有最小值,無最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ax2﹣(2a+1)x+2lnx(a∈R). (Ⅰ)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設g(x)=x2﹣2x,若對任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范圍.

查看答案和解析>>

同步練習冊答案