解:
2x2-3x-2>0;
-3x2+6x-2>0.
考點:一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:根據(jù)一元二次不等式的特點,選擇適當(dāng)?shù)姆椒,解不等式即可?/div>
解答: 解:(1)不等式2x2-3x-2>0可化為
(x-2)(2x+1)>0,
解得x<-
1
2
或x>2,
∴該不等式的解集為{x|x<-
1
2
或x>2};
(2)不等式-3x2+6x-2>0可化為
3x2-6x+2<0,
∵△=36-4×3×2=12>0,
∴對應(yīng)的方程的兩個實數(shù)根為x1=1-
3
3
,x2=1+
3
3

∴該不等式的解集為{x|1-
3
3
<x<1+
3
3
}.
點評:本題考查了一元二次不等式的解法與應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

依據(jù)三角函數(shù)線,做出如下四個判斷:①sin
π
6
=sin
6
;②cos
π
4
=cos(-
π
4
);③tan
π
8
>tan
8
;④sin
5
>sin
5
,其中判斷正確的有(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD的底面為棱形,PA⊥底面ABCD,∠ABC=60°.E,F(xiàn),M分別是BC,CD,PB的中點.
(1)證明:AB⊥MF;
(2)若PA=BA,求二面角E-MF-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x+1|-b|2x-4|(a,b∈R)
(Ⅰ)當(dāng)a=1,b=
1
2
時,解不等式f(x)≤0
(Ⅱ)當(dāng)b=1時,若函數(shù)f(x)既存在最小值,也存在最大值.求所有滿足條件的實數(shù)a的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某運動隊擬在2015年3月份安排5次體能測試,規(guī)定:依次測試,只需有一次測試合格就不必參加后續(xù)的測試.已知運動員小劉5次測試每次合格的概率依次構(gòu)成一個公差為
1
9
的等差數(shù)列,他第一次測試合格的概率不超過
4
9
,且他直到第二次測試才合格的概率為
8
27

(Ⅰ)求小劉第一次參加測試就合格的概率;
(Ⅱ)在小劉參加第一、第二次測試均不合格的前提下,記小劉參加后續(xù)測試的次數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x0∈(0,6),按照如圖程序框圖運行后,能輸出x0的概率是( 。
A、
1
2
B、
2
3
C、
3
4
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行右邊的程序框圖,則輸出的A是(  )
A、
29
12
B、
70
29
C、
29
70
D、
169
70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖展示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程;區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)軸上的點M,如圖①;將線段AB圍成一個圓,使兩端點A、B恰好重合,如圖②;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點A的坐標(biāo)為(0,1),如圖③.圖③中直線AM與x軸交于點N(n,0),則m的象就是n,記作f(m)=n.
(1)方程f(x)=0的解是
 
;
(2)下列說法中正確命題的序號是
 
.(填出所有正確命題的序號)
①f(
1
4
)=1;②f(x)是奇函數(shù);③f(x)在定義域上單調(diào)遞增;④f(x)的圖象關(guān)于點(
1
2
,0)對稱;⑤f(x)>
3
的解集是(
2
3
,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanx>tan
π
5
且x在第三象限,則x的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案