20.已知函數(shù)f(x)=-(x-2m)(x+m+3)(其中m<-1),g(x)=2x-2.
(Ⅰ)若命題p:log2[g(x)]≥1是假命題,求x的取值范圍;
(Ⅱ)若命題q:?x∈(1,+∞),f(x)<0或g(x)<0為真命題,求m的取值范圍.

分析 (Ⅰ)把g(x)代入log2[g(x)]≥1,求解對數(shù)不等式和指數(shù)不等式得到x的范圍,取補集得答案;
(Ⅱ)由題意知?x∈(1,+∞),g(x)<0為假命題,則?x∈(1,+∞),f(x)<0為真命題,然后利用三個二次結(jié)合列關(guān)于m的不等式組得答案.

解答 解:(Ⅰ)由log2[g(x)]≥1,得log2(2x-2)≥1,即2x-2≥2,解得x≥2.
若命題p:log2[g(x)]≥1是假命題,則1<x<2;
(Ⅱ)∵?x∈(1,+∞),g(x)=2x-2>0,
∴若命題q:?x∈(1,+∞),f(x)<0或g(x)<0為真命題,則
?x∈(1,+∞),f(x)<0,即
?x∈(1,+∞),-(x-2m)(x+m+3)<0,也就是(x-2m)(x+m+3)>0.
即$\left\{\begin{array}{l}{2m≥-m-3}\\{2m≤1}\end{array}\right.$或$\left\{\begin{array}{l}{-m-3≥2m}\\{-m-3≤1}\end{array}\right.$,
解得:-4≤m<-1.

點評 本題考查命題的真假判斷,考查了不等式恒成立問題,訓(xùn)練了利用“三個二次”的結(jié)合求解參數(shù)的范圍,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若冪函數(shù)g(x)=(m2-m-1)xm在(0,+∞)上為增函數(shù),則實數(shù)m的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{3i}{-1+2i}$的共軛復(fù)數(shù)的虛部為( 。
A.$\frac{3}{5}i$B.$-\frac{3}{5}i$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等差數(shù)列{an}的前n項和為Sn,且2a5-a3=13,S4=16.
(1)求數(shù)列{an}的前n項和Sn;
(2)設(shè)Tn=$\sum_{i=1}^{n}$(-1)iai,若對一切正整數(shù)n,不等式λTn<[an+1+(-1)n+1an]•2n-1恒成立,求實數(shù)λ的取值范圍;
(3)是否存在正整數(shù)m,n(n>m>2),使得S2,Sm-S2,Sn-Sm成等比數(shù)列?若存在,求出所有的m,n;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=-(x-2m)(x+m+3)(其中m<-1),g(x)=2x-2.
(Ⅰ)若命題“l(fā)og2g(x)<1”是真命題,求x的取值范圍;
(Ⅱ)設(shè)命題p:?x∈(1,+∞),f(x)<0或g(x)<0;命題q:?x∈(-1,0),f(x)•g(x)<0.若p∧q是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.2015年7月9日21時15分,臺風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災(zāi),5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟損失12.99億元.距離陸豐市222千米的梅州也受到了臺風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如下頻率分布直方圖:
(Ⅰ)試根據(jù)頻率分布直方圖估計小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)小明向班級同學(xué)發(fā)出倡議,為該小區(qū)居民捐款.現(xiàn)從損失超過4000元的居民中隨機抽出2戶進行捐款援助,設(shè)抽出損失超過8000元的居民為ξ戶,求ξ的分布列和數(shù)學(xué)期望;
(Ⅲ)臺風(fēng)后區(qū)委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如下表,在表格空白處填寫正確數(shù)字,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān)?
經(jīng)濟損失不超過
4000元
經(jīng)濟損失超過
4000元
合計
捐款超過
500元
30
捐款不超
過500元
6
合計(圖2)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:臨界值表參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知橢圓$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}$=1(a>b>0)過定點P(e,1),Q(-$\frac{\sqrt{13}}{4}$,e)(e為離心率),方程$\frac{m+n}{{x}^{2}}$+$\frac{{a}^{2}}{x}$+1=0有且僅有一個不為0的實根(m>0,n>0)則$\frac{m}{m-1}$+$\frac{4n}{n-1}$的最小值為$\frac{19}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線$\left\{\begin{array}{l}{x=2+5t}\\{y=-1+12t}\end{array}\right.$(t為參數(shù))上對應(yīng)t=0、t=1的兩點間的距離為( 。
A.1B.13C.5D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=mx2+(m-1)x是偶函數(shù),則m的值是( 。
A.1B.-1C.2D.0

查看答案和解析>>

同步練習(xí)冊答案