15.如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=$\frac{1}{2}$AB=2,點(diǎn)E為AC中點(diǎn).將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖2所示.

(Ⅰ)在CD上找一點(diǎn)F,使AD∥平面EFB;
(Ⅱ)求三棱錐C-ABC的高.

分析 (Ⅰ)取CD的中點(diǎn)F,連結(jié)EF,BF,由三角形中位定理得AD∥EF,由此能證明AD∥平面EFB.
(Ⅱ)設(shè)點(diǎn)C到平面ABD的距離為h,由VB-ACD=VC-ABD,利用等積法能求出點(diǎn)C到平面ABD的距離.

解答 解:(Ⅰ)取CD的中點(diǎn)F,連結(jié)EF,BF,
在△ACD中,∵E,F(xiàn)分別為AC,DC的中點(diǎn),
∴EF為△ACD的中位線,
∴AD∥EF,…2分
EF⊆平面EFB,AD?平面EFB,
∴AD∥平面EFB. …4分
(Ⅱ)設(shè)點(diǎn)C到平面ABD的距離為h,
∵平面ADC⊥平面ABC,且BC⊥AC,
∴BC⊥平面ADC,
∴BC⊥AD,而AD⊥DC,
∴AD⊥平面BCD,即AD⊥BD.…8分
∴S△ADB=2$\sqrt{3}$,∴三棱錐B-ACD的高BC=2$\sqrt{2}$,S△ACD=2,
∴$\frac{1}{3}×2\sqrt{2}h$=$\frac{1}{3}×2×2\sqrt{2}$
解得:h=2.∴點(diǎn)C到平面ABD的距離為2.…12分.

點(diǎn)評 本題考查使得線面平行的點(diǎn)的求法,考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要注意等積法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)$f(x)=\frac{{{{({x+1})}^0}}}{{\sqrt{1-x}}}$,則其定義域?yàn)閧x|x<1且x≠-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(|φ|<$\frac{π}{2}$)的圖象可以由g(x)=2$\sqrt{2}$sinxcosx的圖象向x軸負(fù)方向平移$\frac{π}{4}$個(gè)單位得到,則φ的值為( 。
A.-$\frac{π}{8}$B.0C.$\frac{π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$過雙曲線$\frac{x^2}{25}-\frac{y^2}{4}$=1的右頂點(diǎn)且離心率為$\frac{3}{5}$.
(1)求C的方程;
(2)求過點(diǎn)(3,0)且斜率為$\frac{4}{5}$的直線被C所截線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.股票每天的漲、跌幅均不超過10%,即當(dāng)漲了原價(jià)的10%后,便不能再漲,叫做漲停;當(dāng)?shù)嗽瓋r(jià)的10%后,便不能再跌,叫做跌停.已知一支股票某天漲停,之后兩天時(shí)間又跌回到原價(jià),若這兩天此股票股價(jià)的平均每天下跌的百分率為x,則x滿足的方程是( 。
A.1-2x=$\frac{9}{10}$B.1-2x=$\frac{10}{11}$C.(1-x)2=$\frac{9}{10}$D.(1-x)2=$\frac{10}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在四棱錐E-ABCD中,底面ABCD為梯形,AB∥CD,AB=2CD,M為AE的中點(diǎn),設(shè)E-ABCD的體積為V,那么三棱錐M-EBC的體積為( 。
A.$\frac{1}{5}V$B.$\frac{2}{5}V$C.$\frac{1}{3}V$D.$\frac{2}{3}V$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)x,y∈R,a>1,b>1,若ax=by=2,a+b=4,則$\frac{1}{x}$+$\frac{1}{y}$的最大值為( 。
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$B.f(x)=2x,g(x)=2(x+1)
C.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2D.f(x)=$\frac{{x}^{2}+1}{x+1}$,g(x)=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>D)的離心率為$\frac{\sqrt{3}}{3}$,過右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為$\frac{\sqrt{2}}{2}$.
(1)求a、b的值;
(2)C上是否存在點(diǎn)P,使得當(dāng)l繞P轉(zhuǎn)到某一位置時(shí),有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案