【題目】如圖半圓的直徑為4,為直徑延長線上一點,且為半圓周上任一點,以為邊作等邊、按順時針方向排列)

(1)若等邊邊長為,,試寫出關(guān)于的函數(shù)關(guān)系;

(2)問為多少時,四邊形的面積最大?這個最大面積為多少?

【答案】1;(2時,四邊形OACB的面積最大,其最大面積為

【解析】

1根據(jù)余弦定理可求得;

2)先表示出△ABC的面積及△OAB的面積,進而表示出四邊形OACB的面積,并化簡函數(shù)的解析式為正弦型函數(shù)的形式,再結(jié)合正弦型函數(shù)最值的求法進行求解.

1)由余弦定理得

2)四邊形OACB的面積=△OAB的面積+ABC的面積

則△ABC的面積

OAB的面積

四邊形OACB的面積

當(dāng),

時,四邊形OACB的面積最大,其最大面積為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)曲線在點處的切線斜率為,求該切線方程;

(2)若函數(shù)在區(qū)間上恒成立,且存在使得,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面,且,,點為線段的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:

(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200.在機器使用期間,如果備件不足再購買,則每個500.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺機器的同時購買的易損零件數(shù).

)求的分布列;

)若要求,確定的最小值;

)以購買易損零件所需費用的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,T是由A的子集組成的集合,滿足性質(zhì):空集和屬于,且任意兩個元素的交和并也屬于T,

(1)當(dāng)T的元素個數(shù)為2時,請寫出所有符合條件的T.

(2)當(dāng)T的元素個數(shù)為3時,請寫出所有符合條件的T.

(3)求所有符合條件的T的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)用五點法作出在長度為一個周期的閉區(qū)間上的簡圖;

2)寫出的對稱中心與單調(diào)遞增區(qū)間,并求振幅、周期、頻率、相位及初相;

3)求的最大值以及取得最大值時x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知 ,且函數(shù)的圖像上的任意兩條對稱軸之間的距離的最小值是.

1)求的值:

(2)將函數(shù)的圖像向右平移單位后,得到函數(shù)的圖像,求函數(shù)上的最值,并求取得最值時的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

(1)求的解析式;

(2)試判斷的單調(diào)性,并用定義法證明;

3)若存在,使得不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)), ).

(1)如果是關(guān)于的不等式的解,求實數(shù)的取值范圍;

(2)判斷的單調(diào)性,并說明理由;

(3)證明:函數(shù)存在零點q,使得成立的充要條件是

查看答案和解析>>

同步練習(xí)冊答案