{an}是等差數(shù)列,且a1+a4+a7=45,a2+a5+a8=39,則a3+a6+a9的值是(  。

A.24             B.27              C.30               D.33

 

【答案】

D

【解析】解:利用整理關(guān)系求解

因為a1+a4+a7=45,a2+a5+a8=39,所以a2+a5+a8= a1+a4+a7+3d,3d=-6,d=-2

則a3+a6+a9= a2+a5+a8+3d=33

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,點(n,
snn
)(n∈N+)在函數(shù)y=-x+12的圖象上.
(1)寫出Sn關(guān)于n的函數(shù)表達式;
(2)求證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是等差數(shù)列,an>0,公差d≠0,求證:
an+1
+
an+4
an+2
+
an+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,其中a1=31,公差d=-8.
(1)求數(shù)列{an}的通項公式.
(2)數(shù)列{an}從哪一項開始小于0?
(3)求數(shù)列{an}前n項和的最大值,求出對應(yīng)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義一種運算*,滿足n*k=n•λk-1(n、k∈N+,λ是非零實常數(shù)).
(1)對任意給定的k,設(shè)an=n*k(n=1,2,3,…),求證:數(shù)列{an}是等差數(shù)列,并求k=2時,該數(shù)列的前10項和;
(2)對任意給定的n,設(shè)bk=n*k(k=1,2,3,…),求證:數(shù)列{bk}是等比數(shù)列,并求出此時該數(shù)列的前10項和;
(3)設(shè)cn=n*n(n=1,2,3,…),試求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,且a1=2,S3=12.
(Ⅰ)求an;
(Ⅱ)求數(shù)列{anxn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案