【題目】如圖,三棱柱中,各棱長均相等, , , 分別為棱, , 的中點.
(Ⅰ)證明: 平面;
(Ⅱ)若三棱柱為直棱柱,求直線與平面所成角的正弦值.
【答案】(Ⅰ)詳見解析(Ⅱ)詳見解析
【解析】【試題分析】(1)依據(jù)題設(shè)條件,借助運(yùn)用線面平行的判定定理分析推證;(2)依據(jù)題設(shè)條件運(yùn)用線面角的定義構(gòu)造三角形進(jìn)行求解或建立空間直角坐標(biāo)系,運(yùn)用空間向量的數(shù)量積公式探求:
(Ⅰ)證明:在三棱柱中, ,且,
連結(jié),在中,因為, 分別為棱, 的中點,所以, .
又為的中點,可得,所以, ,
因此四邊形為平行四邊形,所以,
又平面, 平面,
所以平面.
(Ⅱ)證明:由于底面是正三角形, 為的中點,
所以,
又,又,所以平面.
在平面內(nèi),過點作,交直線于,連結(jié),
平面,由此得, 為直線與平面所成的角.
設(shè)三棱柱的棱長為,可得,由,所以,
在中, ,
所以直線與平面所成角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)實數(shù),整數(shù), .
(1)證明:當(dāng)且時, ;
(2)數(shù)列滿足, ,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數(shù)分別為2、3、4,乙袋中紅色、黑色、白色小球的個數(shù)均為3,某人用左右手分別從甲、乙兩袋中取球.
(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;
(2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球的成功取法次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
性別 是否需要志愿者 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(Ⅰ)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人比例;
(Ⅱ)能否有的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(Ⅲ)根據(jù)(Ⅱ)中的結(jié)論,能否提供更好的調(diào)查方法來估計該地區(qū)老年人中需要志愿幫助?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,過點的直線與相交于兩點,點關(guān)于軸的對稱點為.
(Ⅰ)證明:點在直線上;
(Ⅱ)設(shè),求的內(nèi)切圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為,對任意都有,且當(dāng)時, .
(1)試判斷的單調(diào)性,并證明;
(2)若,
①求的值;
②求實數(shù)的取值范圍,使得方程有負(fù)實數(shù)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的圖象在點(1, )處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅲ)已知,對于函數(shù)圖象上任意不同的兩點,其中,直線的斜率為,記,若求證
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
性別 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)請根據(jù)上面的數(shù)據(jù)分析該地區(qū)的老年人需要志愿者提供幫助與性別有關(guān)嗎
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線焦點為,點A,B,C為該拋物線上不同的三點,且滿足.
(1)求;
(2)若直線交軸于點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com