分析 利用空間向量基本定理,即可得出結(jié)論.
解答 解:∵$\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{A{A_1}}+\overrightarrow{{A_1}N}$
$\begin{array}{l}=-\frac{1}{3}\overrightarrow{AC}+\overrightarrow{A{A_1}}+\frac{2}{3}\overrightarrow{{A_1}D}\\=-\frac{1}{3}({\overrightarrow{AB}+\overrightarrow{AD}})+\overrightarrow{A{A_1}}+\frac{2}{3}({\overrightarrow{{A_1}A}+\overrightarrow{AD}})\\=-\frac{1}{3}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AD}+\frac{1}{3}\overrightarrow{A{A_1}}+\frac{2}{3}\overrightarrow{AD}\\=-\frac{1}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b+\frac{1}{3}\overrightarrow c\\∴\overrightarrow{MN}=-\frac{1}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b+\frac{1}{3}\overrightarrow c.\end{array}$
點評 本題考查空間向量基本定理,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0] | B. | [0,+∞) | C. | [1,+∞) | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (4,-2,7) | B. | (4,-1,7) | C. | (3,-1,7) | D. | (3,-2,7) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=-x | B. | y=log3x | C. | $y={x^{\frac{1}{3}}}$ | D. | y=($\frac{1}{2}$)x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 零向量是沒有方向的向量 | B. | 零向量的方向是任意的 | ||
C. | 零向量與任一向量共線 | D. | 零向量只能與零向量相等 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com