考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)由于正項(xiàng)數(shù)列{a
n}滿(mǎn)足a
n=2
-1.可得
Sn=,因此當(dāng)n≥2時(shí),a
n=S
n-S
n-1,可得a
n-a
n-1=2,利用等差數(shù)列的通項(xiàng)公式即可得出;
(2)設(shè)t
n=
=
,r
n=
a1×a2…×an |
(a1+1)×(a2+1)…×(an+1) |
=
,當(dāng)n=1時(shí),T
1=R
1.當(dāng)n≥2時(shí),證明r
n>t
n.由于r
n=
>×××…×
×=
×,可得r
n>t
n,即可得出.
解答:
解:(1)∵正項(xiàng)數(shù)列{a
n}滿(mǎn)足a
n=2
-1.
∴
Sn=,
∴當(dāng)n≥2時(shí),a
n=S
n-S
n-1=
-
,
化為(a
n+a
n-1)(a
n-a
n-1-2)=0,
又a
n+a
n-1>0,
∴a
n-a
n-1=2,
當(dāng)n=1時(shí),
a1=2-1,解得a
1=1.
∴正項(xiàng)數(shù)列{a
n}是等差數(shù)列,
∴a
n=1+2(n-1)=2n-1.
(2)設(shè)t
n=
=
,r
n=
a1×a2…×an |
(a1+1)×(a2+1)…×(an+1) |
=
,
當(dāng)n=1時(shí),T
1=R
1.
當(dāng)n≥2時(shí),證明r
n>t
n.
r
n=
>×××…×
×=
×,
∴r
n>>=t
n,
∴當(dāng)n≥2時(shí),R
n>T
n.
綜上可得:當(dāng)n=1時(shí),T
1=R
1.
當(dāng)n≥2時(shí),R
n>T
n.
點(diǎn)評(píng):本題考查了遞推式的應(yīng)用、等差數(shù)列的通項(xiàng)公式,考查了通過(guò)放縮法證明不等式、數(shù)列的前n項(xiàng)和,考查了推理能力與計(jì)算能力,屬于難題.