在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是(  )
A、42   42
B、45  46
C、45  42
D、47  48
考點:莖葉圖
專題:概率與統(tǒng)計
分析:由莖葉圖性質(zhì)和中位數(shù)定義求解.
解答: 解:由莖葉圖知:
甲組數(shù)據(jù)的中位數(shù)為:45,
乙兩組數(shù)據(jù)的中位數(shù)為:46.
故選:B.
點評:本題考查中位數(shù)的求法,是基礎(chǔ)題,解題時要注意莖葉圖的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:數(shù)列{an}的通項公式是an=
na
(n+1)b
,其中a、b均為正常數(shù),那么數(shù)列{an}是( 。
A、遞減數(shù)列
B、遞增數(shù)列
C、常數(shù)列
D、增減性不確定的數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當輸入a的值為2,b的值為-3時,右邊程序運行的結(jié)果是(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算sin45°cos15°+cos45°sin15°=( 。
A、-
3
2
B、-
1
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+lnx的導(dǎo)數(shù)為( 。
A、f′(x)=2x+ex
B、f′(x)=2x+lnx
C、f′(x)=2x+
1
x
D、f′(x)=2x-
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈(0,+∞),x3-x2+1≥0,”的否定是( 。
A、?x∈(0,+∞),x3-x2+1≤0
B、?x∈(0,+∞),x3-x2+1≤0
C、?x∈(0,+∞),x3-x2+1<0
D、?x∈(0,-∞),x3-x2+1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+
π
3
)(A>0,ω>0)與y=-sinx的圖象關(guān)于一直線對稱.
(Ⅰ)求函數(shù)y=f(x)的表達式;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點的橫坐標縮短為原來的
1
2
倍,縱坐標不變,得到函數(shù)y=g(x)的圖象.若關(guān)于x的方程g(x)+m=0在區(qū)間[0,
π
2
]上有且只有一個實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求使等式[
12
24
]=[
10
02
]M[
10
0-1
]成立的矩陣M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個左、右焦點分別是F1(-
2
,0),F(xiàn)2
2
,0),且經(jīng)過點A(
3
2
,
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C上兩點M,N使
OM
+
ON
OA
,λ∈(0,2),求△OMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案