12.?dāng)?shù)列{an}的前n項(xiàng)和是Sn,且Sn+$\frac{1}{2}$an=1,數(shù)列{bn},{cn}滿足bn=log3$\frac{{{a}_{n}}^{2}}{4}$,cn=$\frac{1}{_{n}_{n+2}}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{cn}的前n項(xiàng)和為Tn,若不等式Tn<m對(duì)任意的正整數(shù)n恒成立,求m的取值范圍.

分析 (I)利用遞推公式、等比數(shù)列的通項(xiàng)公式即可得出.
(II)利用“裂項(xiàng)求和”方法即可得出.

解答 解:(Ⅰ)由題意得:${S_{n+1}}+\frac{1}{2}{a_{n+1}}=1$,①${S_n}+\frac{1}{2}{a_n}=1$②
①-②可得${a}_{n+1}+\frac{1}{2}{a}_{n+1}-\frac{1}{2}{a}_{n}$=0,即${a}_{n+1}=\frac{1}{3}{a}_{n}$.
當(dāng)n=1時(shí) ${S_1}+\frac{1}{2}{a_1}=1$,則${a_1}=\frac{2}{3}$,則{an}是以$\frac{2}{3}$為首項(xiàng),$\frac{1}{3}$為公比的等比數(shù)列.
因此${a_n}=\frac{2}{3}•{(\frac{1}{3})^{n-1}}=\frac{2}{3^n}$.
(Ⅱ)${b_n}={log_3}\frac{a_n}{4}={log_3}\frac{a_n^2}{4}={log_3}{3^{-2n}}=-2n$,cn=$\frac{1}{_{n}_{n+2}}$=$\frac{1}{2n(2n+4)}$=$\frac{1}{8}(\frac{1}{n}-\frac{1}{n+2})$..
∴${T_n}=\frac{1}{8}(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+…+\frac{1}{n-1}-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{n+2})=\frac{1}{8}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})<\frac{3}{16}$.
∴$m≥\frac{3}{16}$.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、數(shù)列遞推關(guān)系、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,則輸出的a值為( 。
A.-3B.$\frac{1}{3}$C.$-\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合S={0,1,2,3,4,5,6},T={x|x2-6x+5≤0},則S∩T=( 。
A.{2,3,4}B.{1,2,3,4,5}C.{2,3}D.T

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)動(dòng)點(diǎn)P(x,y)(x≥0)到定點(diǎn)F(1,0)的距離比它到y(tǒng)軸的距離大1,記點(diǎn)P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)D(x0,2)是曲線C上一點(diǎn),與兩坐標(biāo)軸都不平行的直線l1,l2過點(diǎn)D,且它們的傾斜角互補(bǔ).若直線l1,l2與曲線C的另一交點(diǎn)分別是M,N,證明直線MN的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)的部分圖象如圖所示,則f(x)的解析式可以是( 。
A.f(x)=x+sinxB.f(x)=$\frac{cosx}{x}$C.f(x)=x(x-$\frac{π}{2}$)(x-$\frac{3π}{2}$)D.f(x)=xcosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線$\frac{x^2}{m}-{y^2}=1$的一個(gè)頂點(diǎn)坐標(biāo)為(2,0),則此雙曲線的漸近線方程為( 。
A.$y=±\frac{{\sqrt{2}}}{2}x$B.$y=±\sqrt{2}x$C.y=±2xD.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若命題“存在x∈R,使得a-ex≥0成立”為假命題,則實(shí)數(shù)a的取值范圍為a≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知$A={60°},b=4,{S_{△ABC}}=2\sqrt{3}$,則a=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}是等差數(shù)列,滿足a1=2,a4=8,數(shù)列{bn}是等比數(shù)列,滿足b2=4,b5=32.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an+bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案