【題目】如圖是某算法的程序框圖,若程序運行后輸出的結(jié)果是14,則判斷框內(nèi)填入的條件可以是(
A.S≥10?
B.S≥14?
C.n>4?
D.n>5?

【答案】B
【解析】解:模擬執(zhí)行程序,可得: S=0,n=1
第二次循環(huán)n=2,s=0+1+2=3;
第三次循環(huán)n=3,s=3﹣1+3=5;
第四次循環(huán)n=4,s=5+1+4=10.
第五次進入循環(huán)體后,n=5,s=10﹣1+5=14,
滿足條件S≥14?,跳出循環(huán).
故選B.
【考點精析】掌握程序框圖是解答本題的根本,需要知道程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某機械廠要將長,寬的長方形鐵皮進行裁剪.已知點的中點,點在邊上,裁剪時先將四邊形沿直線翻折到處(點分別落在直線下方點處,交邊于點),再沿直線裁剪.

(1)當時,試判斷四邊形的形狀,并求其面積;

(2)若使裁剪得到的四邊形面積最大,請給出裁剪方案,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線上任意一點到直線的距離是它到點的距離的2倍.

(1) 求曲線的方程;

(2) 過點的直線與曲線交于兩點.若的中點,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,四邊形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,過點C作CO⊥AB,垂足為O,將△OBC沿CO折起,如圖2使得平面CBO與平面AOCD所成的二面角的大小為θ(0<θ<π),E,F(xiàn)分別為BC,AO的中點
(1)求證:EF∥平面ABD
(2)若θ= ,求二面角F﹣BD﹣O的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρ2﹣2ρcosθ﹣4=0
(1)若直線l與曲線C沒有公共點,求m的取值范圍;
(2)若m=0,求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線C的頂點在原點O,過點,其焦點Fx軸上.

求拋物線C的標準方程;

斜率為1且與點F的距離為的直線x軸交于點M,且點M的橫坐標大于1,求點M的坐標;

是否存在過點M的直線l,使lC交于P、Q兩點,且若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1 , F2是雙曲線C1 =1(a>0,b>0)的左、右焦點,且F2是拋物線C2:y2=2px(p>0)的焦點,P是雙曲線C1與拋物線C2在第一象限內(nèi)的交點,線段PF2的中點為M,且|OM|= |F1F2|,其中O為坐標原點,則雙曲線C1的離心率是(
A.2+
B.1+
C.2+
D.1+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,A,B,C為的a、b、c所對的角,若
(1)求A;
(2)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某零售店近5個月的銷售額和利潤額資料如下表:

商店名稱

銷售額/千萬元

3

5

6

7

9

利潤額/百萬元

2

3

3

4

5

(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)關(guān)系;

(2)用最小二乘法計算利潤額關(guān)于銷售額的回歸直線方程;

(3)當銷售額為4千萬元時,利用(2)的結(jié)論估計該零售店的利潤額(百萬元).

[參考公式:,]

查看答案和解析>>

同步練習冊答案