9.圓心在直線x+y=0上且過(guò)兩x2+y2-2x=0,x2+y2+2y=0的交點(diǎn)的圓的方程為( 。
A.x2+y2-x+y-$\frac{1}{2}$=0B.x2+y2+x-y-$\frac{1}{2}$=0C.x2+y2-x+y=0D.x2+y2+x-y=0

分析 利用“圓系”方程的概念求圓的方程,于是可設(shè)所求圓的方程為x2+y2-2x+λ(x2+y2+2y)=0(λ≠-1),得到其圓心坐標(biāo),再代入x+y=0可得出λ的值,反代入圓系方程化簡(jiǎn)得出圓的方程來(lái).

解答 解:設(shè)所求圓的方程為x2+y2-2x+λ(x2+y2+2y)=0(λ≠-1),
即x2+y2-$\frac{2}{1+λ}$x+$\frac{2λ}{1+λ}$y=0.
可知圓心坐標(biāo)為($\frac{1}{1+λ}$,-$\frac{λ}{1+λ}$).
因圓心在直線x+y=0上,所以$\frac{1}{1+λ}$-$\frac{λ}{1+λ}$=0,解得λ=1.
將λ=1代入所設(shè)方程并化簡(jiǎn),圓的方程為x2+y2-x+y=0.
故選:C.

點(diǎn)評(píng) 本題考查直線和圓的方程,直線與圓的位置關(guān)系,考查了圓系方程,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.點(diǎn)(1,-2)到直線x-y=1的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=1+log2(-x)與g(x)=2x-1在同一直角坐標(biāo)系下的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)=ax+b-1(a>0,b≠1)的定義域和值域都是[-1,0],則a+b=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)$y=3sinx+\sqrt{3}cosx$($x∈[0,\frac{π}{2}]$) 的單調(diào)遞增區(qū)間是[0,$\frac{π}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)復(fù)數(shù)z=x+(y-1)i(x,y∈R),若|z|≤1,則y≤x的概率為$\frac{1}{4}-\frac{1}{2π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知sin(π+θ)=$\frac{1}{2}$,求$\frac{cos(3π+θ)}{cos[cos(π-θ)-1]}$+$\frac{cos(θ-2π)}{sin(θ-\frac{7π}{2})cos(π-θ)-sin(\frac{3π}{2}+θ)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.給出下列四個(gè)命題,其中錯(cuò)誤的命題有( 。﹤(gè).
(1)函數(shù)y=sin2x+cos2x在x∈[0,$\frac{π}{2}$]上的單調(diào)遞增區(qū)間是[0,$\frac{π}{8}$];
(2)設(shè)隨機(jī)變量X~N(1,σ2),若P(0<X<1)=0.4,則P(0<X<2)=0.8;
(3)設(shè)函數(shù)f(x)=sin(2x+$\frac{π}{3}$),f(x)的圖象向左平移$\frac{π}{12}$個(gè)單位,得到一個(gè)偶函數(shù)的圖象;
(4)“直線x-ay=0,與直線x+ay=0互相垂直”的充分條件是“a=1”
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、E1、F分別是棱AD、AA1、AB的中點(diǎn).
(1)判斷平面ADD1A1與平面FCC1的位置關(guān)系,并證明;
(2)證明:直線EE1∥平面FCC1

查看答案和解析>>

同步練習(xí)冊(cè)答案