20.已知函數(shù)$f(x)=\left\{\begin{array}{l}x\\{x^2}\end{array}\right.\;\;\;\begin{array}{l}{({x≤a})}\\{({x>a})}\end{array}$,若存在實數(shù)b,使函數(shù)g(x)=f(x)-b有兩個零點,則a的取值范圍是(  )
A.a<0B.a>0且a≠1C.a<1D.a<1且a≠0

分析 根據(jù)函數(shù)y=x,y=x2的性質(zhì),通過討論a的范圍,從而確定a的范圍即可.

解答 解:由函數(shù)y=x,y=x2的性質(zhì)知,
當a<0時,存在實數(shù)b,使y=b與y=f(x)=x2,x>a有兩個交點;
當a=0時,f(x)為單調(diào)增函數(shù),
不存在實數(shù)b,使函數(shù)g(x)=f(x)-b有兩個零點;
當0<a<1時,存在實數(shù)b,使y=b與y=f(x)=x2,x>a有兩個交點;
所以a<1且a≠0,故選D.

點評 本題考查了常見函數(shù)的性質(zhì),考查分類討論思想以及轉(zhuǎn)化思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.在平面直角坐標系xOy中,$\overrightarrow{i}$,$\overrightarrow{j}$分別是與x軸、y軸方向相同的單位向量,已知$\overrightarrow{OA}$=$\overrightarrow{i}$+2$\overrightarrow{j}$,$\overrightarrow{OB}$=3$\overrightarrow{i}$+4$\overrightarrow{j}$,$\overrightarrow{OC}$=2t$\overrightarrow{i}$+(t+5)$\overrightarrow{j}$,若$\overrightarrow{AB}$與$\overrightarrow{AC}$共線,則實數(shù)t的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知正實數(shù)a,b滿足a+b=2,則$\frac{1}{a}+\frac{2}$的最小值為( 。
A.$\frac{{3+2\sqrt{2}}}{2}$B.3C.$\frac{3}{2}$D.$3+2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)f(x)=tan(2x-$\frac{π}{4}$)的最小正周期是$\frac{π}{2}$;不等式f(x)>1的解集是$\{x|\frac{kπ}{2}+\frac{π}{4}<x<\frac{kπ}{2}+\frac{3π}{8},k∈Z\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設向量$\overrightarrow a=(2m-1,3)$,$\overrightarrow b=(1,-1)$,若$\overrightarrow a•\overrightarrow b=2$,則m的值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是兩個相互垂直的單位向量,且$\overrightarrow a=-2\overrightarrow{e_1}-\overrightarrow{e_2}$,$\overrightarrow b=\overrightarrow{e_1}-λ\overrightarrow{e_2}$.
(Ⅰ)若$\overrightarrow a∥\overrightarrow b$,求λ的值;
(Ⅱ)若$\overrightarrow a⊥\overrightarrow b$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合A={x|y=$\sqrt{3-x}$},集合B={x|x≥2},A∩B=( 。
A.[0,3]B.[2,3]C.[2,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知圓O:x2+y2=a2(a>0),點A(0,4),B(2,2).
(1)若線段AB的中垂線與圓O相切,求實數(shù)a的值;
(2)過直線AB上的點P引圓O的兩條切線,切點為M,N,若∠MPN=60°,則稱點P為“好點”.若直線AB上有且只有兩個“好點”,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x>0}\\{{2}^{-x}-1,x≤0}\end{array}\right.$,則f[f(-2)]=2;若f(x0)<3,則x0的取值范圍是(-2,7).

查看答案和解析>>

同步練習冊答案