5.已知a>b,則使不等式a(a-c)>b(b-c)成立的一個(gè)充要條件是a+b>c.

分析 解不等式a(a-c)>b(b-c),求出其充要條件即可.

解答 解:∵a(a-c)>b(b-c),
∴(a-b)(a+b-c)>0,
又a>b,
∴a+b>c,
故答案為:a+b>c.

點(diǎn)評(píng) 本題考查了充分必要條件,考查解不等式問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知f(x)=alnx+$\frac{1}{x}$.
(1)當(dāng)a=1時(shí),討論f(x)的單調(diào)性
(2)是否存在正數(shù)a,使得f(x)在[1,e]上最小值為0?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求函數(shù)y=tan(3x-$\frac{π}{3}}$)的定義域、值域,并指出它的周期性、奇偶性、單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,四棱錐P-ABCD的底面是直角梯形,AD∥BC,∠ADC=90°,AD=2BC,PA⊥平面ABCD,E為線段PA的中點(diǎn).
(Ⅰ)求證:BE∥平面PCD;
(Ⅱ)若PA=AD=DC=2,求點(diǎn)E到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知正數(shù)x,y滿(mǎn)足x2+y2=1,則$\frac{1}{x}+\frac{1}{y}$的最大值為(  )
A.$\frac{{3\sqrt{5}}}{2}$B.$2\sqrt{2}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.方程sin2x+$\sqrt{3}$cos2x=m(0<m<$\frac{1}{2}$)在區(qū)間x∈[0,2π]上的所有解的和等于$\frac{11π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.定義在R上的函數(shù)f(x)滿(mǎn)足f(x+1)=f(x-1),在區(qū)間[-1,1)上,f(x)=$\left\{\begin{array}{l}x-m,-1≤x<0\\|{x-\frac{2}{5}}|,0≤x<1\end{array}$,其中m∈R,若f(-$\frac{5}{2}$)=f($\frac{9}{2}$),則f(5m)=(  )
A.-$\frac{8}{5}$B.-$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知集合A={x|-1≤x≤1},B={x|-1≤x≤a},且(A∪B)⊆(A∩B),則實(shí)數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.二項(xiàng)式(3$\root{3}{x}$+$\frac{1}{x}$)5的展開(kāi)式的各項(xiàng)系數(shù)的和為1024,所有二項(xiàng)式系數(shù)的和為32.

查看答案和解析>>

同步練習(xí)冊(cè)答案