9.已知數(shù)列{an}的通項(xiàng)公式an=-5n+2,則其前n項(xiàng)和Sn=-$\frac{5{n}^{2}+n}{2}$.

分析 判斷{an}是等差數(shù)列,代入求和公式即可.

解答 解:a1=-3,
an+1-an=-5(n+1)+2-(-5n+2)=-5,
∴{an}是首項(xiàng)為-3,公差為-5的等差數(shù)列,
∴Sn=na1+$\frac{n(n-1)}{2}d$=-3n-$\frac{5n(n-1)}{2}$=-$\frac{5{n}^{2}+n}{2}$.
故答案為:-$\frac{5{n}^{2}+n}{2}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的判斷與前n項(xiàng)和公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{2i}{1+i}$(i為虛數(shù)單位)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場(chǎng)所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來(lái)越多地引起了人們的關(guān)注.某部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照 分成5組,制成如圖所示頻率分直方圖.
(1)求圖中x的值;
(2)已知滿意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評(píng)分值為的人中隨機(jī)抽取4人進(jìn)行座談,設(shè)其中的女生人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)i為虛數(shù)單位,復(fù)數(shù) z1=a-3i,z2=1+2i,若z1+z2是純虛數(shù),則實(shí)數(shù)a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)是定義在R上的奇函數(shù),f(1)=0,$\frac{xf'(x)+f(x)}{x^2}>0$(x>0),則不等式x2f(x)>0的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2=4,S4=22,an=28,則n=( 。
A.3B.7C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)已知x,y∈R+,且x+y>2,求證:$\frac{1+x}{y}$與$\frac{1+y}{x}$中至少有一個(gè)小于2.
(2)函數(shù)f(x)=lnx-$\frac{a(x-1)}{x}$(x>0,a∈R).當(dāng)a>0時(shí),求證:函數(shù)f(x)的圖象存在唯一零點(diǎn)的充要條件是a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)集合A={x|2x-3≥1},集合$B=\left\{{x|y=\frac{sinx}{{\sqrt{5-x}}}}\right\}$,則A∩B=( 。
A.(2,5)B.[2,5]C.(2,5]D.[2,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)f(x)=$\frac{1}{x}$在[2,6]上的平均變化率為-$\frac{1}{12}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案