已知二次函數(shù)f(x)的最小值1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[3a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[-1,3]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方.
考點(diǎn):函數(shù)恒成立問題,函數(shù)解析式的求解及常用方法,冪函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)設(shè)出S(x)=f(x)-3,利用函數(shù)的最小值,求出f(x)的解析式;
(2)通過f(x)在區(qū)間[3a,a+1]上不單調(diào),說明對稱軸在求解內(nèi)部,然后求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[-1,3]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,直接利用二次函數(shù)閉區(qū)間上的最值求解即可.
解答: 解:(1)設(shè)S(x)=f(x)-3=a(x-0)(x-2),
∴f(x)=ax(x-3)+3,
∴f(x)=ax2-2ax+3,
12a-4a2
4a
=3-a=1⇒a=2,
∴f(x)=2x2-4x+3;
(2)由對稱軸x=1,
3a<1
a+1>1
⇒0<a<
1
3
,
(3)x∈[-1,3]時(shí),2x2-4x+3>2x+2m+1,
∴2m<2x2-6x+2,
即-1≤x≤3,m<x2-3x+1,
∴m<5.
點(diǎn)評:本題考查函數(shù)的解析式的求法二次函數(shù)的最值,函數(shù)的恒成立條件的應(yīng)用,考查分析問題解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-3x2-9x+3,若函數(shù)g(x)=f(x)-m,在x∈[-2,5]上有3個(gè)零點(diǎn),則m的取值范圍為( 。
A、[1,8]
B、(-24,1]
C、[1,8)
D、(-24,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個(gè)盒子中裝有6枝圓珠筆,其中3枝一等品,2枝二等品和1枝三等品,從中任取3枝,求:
(Ⅰ)取出的3枝中恰有1枝一等品的概率;
(Ⅱ)取出的3枝中一、二、三等品各一枝的概率;
(Ⅲ)取出的3枝中沒有三等品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)x,y滿足
y≥|x-2|
1≤y≤3
,則不等式組所表示的平面區(qū)域的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是( 。
A、若a>b,則ac2>bc2
B、若a2>b2,則a>b
C、若
1
a
1
b
,則a<b
D、若
a
b
,則a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a=2
3
,b=2
2
,A=60°,則B=( 。
A、450
B、1350
C、450或1350
D、300或1500

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高級職稱教師104人,中級職稱教師46人,其他教師若干人.為了了解該校教師的工資收入情況,若按分層抽樣從該校的所有教師中抽取42人進(jìn)行調(diào)查,已知從其它教師中共取了12人,則該校共有教師
 
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠修建一個(gè)長方體無蓋儲水池,其容積為1800立方米,深度為3米,池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元,設(shè)池底長方形的長為x米.
(1)求底面積,并用含x的表達(dá)式表示池壁面積;
(2)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知I為實(shí)數(shù)集,P={x|x2-2x<0},Q={y|y=2x+1,x∈R},則P∩(∁IQ)=( 。
A、{x|0<x<1}
B、{x|0<x≤1}
C、{x|x<1}
D、∅

查看答案和解析>>

同步練習(xí)冊答案