(本小題滿分14分)已知函數(shù),函數(shù)的最小值為
(1)當(dāng)時(shí),求
(2)是否存在實(shí)數(shù)同時(shí)滿足下列條件:①;②當(dāng)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001147877486.png" style="vertical-align:middle;" /> 時(shí),值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001147986589.png" style="vertical-align:middle;" />?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。
(1)當(dāng) ,當(dāng)  ;
(2)。

試題分析:(1)g(x)為關(guān)于f(x)的二次函數(shù),可用換元法,轉(zhuǎn)化為二次函數(shù)在特定區(qū)間上的最值問(wèn)題,定區(qū)間動(dòng)軸;
(2)由(1)可知a≥3時(shí),h(a)為一次函數(shù)且為減函數(shù),求值域,找關(guān)系即可.
(1)
當(dāng)
當(dāng) ,                         。。。。。。。7分
(2)假設(shè)滿足題意的存在,上是減函數(shù)。
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001147877486.png" style="vertical-align:middle;" />,值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001147986589.png" style="vertical-align:middle;" />,
,
但這與矛盾。
 。。。。。14分
點(diǎn)評(píng):解決該試題的關(guān)鍵是理解二次函數(shù)在特定區(qū)間上的值域問(wèn)題一般結(jié)合圖象和單調(diào)性處理,“定軸動(dòng)區(qū)間”、“定區(qū)間動(dòng)軸”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題14分)已知函數(shù).
設(shè)關(guān)于x的不等式 的解集為且方程的兩實(shí)根為.
(1)若,求的關(guān)系式;
(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若曲線在點(diǎn)處的切線方程為,則
A.B.
C.D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)曲線上的點(diǎn)的切線的方程為,那么點(diǎn)坐標(biāo)可能為_(kāi)___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知函數(shù)上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù),.
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間上不存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若函數(shù)上單調(diào)遞增,則的取值范圍是            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)在其定義域的一個(gè)子區(qū)間內(nèi)部是單調(diào)函數(shù),則實(shí)數(shù) 的取值范圍是 (    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)的圖象在點(diǎn)處的切線方程是,則_.

查看答案和解析>>

同步練習(xí)冊(cè)答案