3.已知z=($\sqrt{3}$-2sinx)+(2cosx+1)i(0<x<π)是純虛數(shù),則x等于( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$或$\frac{2π}{3}$

分析 z=($\sqrt{3}$-2sinx)+(2cosx+1)i(0<x<π)是純虛數(shù),可得$\left\{\begin{array}{l}{\sqrt{3}-2sinx=0}\\{2cosx+1≠0}\end{array}\right.$,0<x<π,解出即可得出.

解答 解:∵z=($\sqrt{3}$-2sinx)+(2cosx+1)i(0<x<π)是純虛數(shù),
∴$\left\{\begin{array}{l}{\sqrt{3}-2sinx=0}\\{2cosx+1≠0}\end{array}\right.$,0<x<π,
解得x=$\frac{π}{3}$,
故選:A.

點評 本題考查了純虛數(shù)的定義、三角函數(shù)值的化簡計算,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.已知全集U=R,集合A={x|x∈R,x2≠1},B={y|ay-1=0},若B⊆∁UA,則a的集合為{-1,0,1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若二次函數(shù)y=ax2(a>0)的圖象與不等式組$\left\{\begin{array}{l}{x-3≤0}\\{y-2≥0}\\{y≤x+1}\end{array}\right.$表示的平面區(qū)域無公共點,則實數(shù)a的取值范圍為( 。
A.($\frac{2}{9}$,2)B.($\frac{2}{9}$,$\frac{4}{9}$)C.(0,$\frac{2}{9}$)∪($\frac{4}{9}$,+∞)D.(0,$\frac{2}{9}$)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)-$\sqrt{3}$sinxcosx-2sinx,x∈[$\frac{π}{6}$,π],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知命題p:設a,b∈R,則“a+b>4”是“a>2且b>2”的必要不充分條件;命題q:若$\overrightarrow{a}$•$\overrightarrow$<0,則$\overrightarrow{a}$,$\overrightarrow$夾角為鈍角,在命題①p∧q;②¬p∨¬q;③p∨¬q;④¬p∨q中,真命題是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合A={x|x2-2x-3≥0},B={x|log2(x-1)<2},則(∁RA)∩B=( 。
A.(1,3)B.(-1,3)C.(3,5)D.(-1,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在△ABC中,角A,B,C所對的邊分別為a,b,c,且$\frac{2b-\sqrt{3}c}{\sqrt{3}a}$=$\frac{cosC}{cosA}$.
(1)求A的值;
(2)若B=$\frac{π}{6}$,BC邊上的中線AM=2$\sqrt{21}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設z=-2x+y,實數(shù)x,y滿足$\left\{\begin{array}{l}x≤2\\ x-y≥-1\\ 2x+y≥k.\end{array}\right.$若z的最大值是0,則實數(shù)k=4,z的最小值是-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.化簡3($\overrightarrow{a}$-$\overrightarrow$)+3(2$\overrightarrow{a}$+3$\overrightarrow$)-($\overrightarrow$-$\overrightarrow{a}$).

查看答案和解析>>

同步練習冊答案