【題目】在如圖所示的多面體中,底面四邊形是菱形,,,相交于,,在平面上的射影恰好是線(xiàn)段的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若直線(xiàn)與平面所成的角為,求平面與平面所成銳二面角的余弦值.
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ).
【解析】試題分析:(1)證明線(xiàn)面垂直先證明線(xiàn)線(xiàn)垂直,EH⊥BD,AC⊥BD,∴BD⊥平面EACF,即BD⊥平面ACF;(2)建立空間坐標(biāo)系,求兩個(gè)平面的法向量,根據(jù)向量夾角的求法得到面面角.
解析:
(Ⅰ)取AO的中點(diǎn)H,連結(jié)EH,則EH⊥平面ABCD
∵BD在平面ABCD內(nèi),∴EH⊥BD
又菱形ABCD中,AC⊥BD 且EH∩AC=H,EH、AC在平面EACF內(nèi)
∴BD⊥平面EACF,即BD⊥平面ACF
(Ⅱ)由(Ⅰ)知EH⊥平面ABCD,以H為原點(diǎn),如圖所示建立空間直角坐標(biāo)系H﹣xyz
∵EH⊥平面ABCD,∴∠EAH為AE與平面ABCD所成的角,
即∠EAH=45°,又菱形ABCD的邊長(zhǎng)為4,則
各點(diǎn)坐標(biāo)分別為,
E(0,0,)
易知為平面ABCD的一個(gè)法向量,記=,=,=
∵EF∥AC,∴=
設(shè)平面DEF的一個(gè)法向量為(注意:此處可以用替代)
即 =,
令,則,∴
∴
平面DEF與平面ABCD所成角(銳角)的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年8月20日起,市交警支隊(duì)全面啟動(dòng)路口秩序環(huán)境綜合治理,重點(diǎn)整治機(jī)動(dòng)車(chē)不禮讓斑馬線(xiàn)和行人的行為,經(jīng)過(guò)一段時(shí)間的治理,從市交警隊(duì)數(shù)據(jù)庫(kù)中調(diào)取了20個(gè)路口近三個(gè)月的車(chē)輛違章數(shù)據(jù),經(jīng)統(tǒng)計(jì)得如圖所示的頻率分布直方圖,統(tǒng)計(jì)數(shù)據(jù)中凡違章車(chē)次超過(guò)30次的設(shè)為“重點(diǎn)關(guān)注路口”.
(1)現(xiàn)從“重點(diǎn)關(guān)注路口”中隨機(jī)抽取兩個(gè)路口安排交警去執(zhí)勤,求抽出來(lái)的路口的違章車(chē)次一個(gè)在,一個(gè)在中的概率;
(2)現(xiàn)從支隊(duì)派遣5位交警,每人選擇一個(gè)路口執(zhí)勤,每個(gè)路口至多1人,違章車(chē)次在的路口必須有交警去,違章車(chē)次在的不需要交警過(guò)去,設(shè)去“重點(diǎn)關(guān)注路口”的交警人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)在平面直角坐標(biāo)系下的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線(xiàn)的普通方程及極坐標(biāo)方程;
(2)直線(xiàn)的極坐標(biāo)方程是,射線(xiàn): 與曲線(xiàn)交于點(diǎn)與直線(xiàn)交于點(diǎn),求線(xiàn)段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若在定義域上是增函數(shù),求的取值范圍;
(2)若存在,使得,求的值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為常數(shù)).
(1)求函數(shù)在的最小值;
(2)設(shè)是函數(shù)的兩個(gè)零點(diǎn),且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在點(diǎn)處的切線(xiàn)是.
(1)求函數(shù)的極值;
(2)當(dāng)恒成立時(shí),求實(shí)數(shù)的取值范圍(為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,平面平面,四邊形和四邊形都是正方形,且邊長(zhǎng)為,是的中點(diǎn).
(1)求證:直線(xiàn)平面;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 若f(x1)=f(x2),且x1<x2,關(guān)于下列命題:(1)f(x1)>f(﹣x2);(2)f(x2)>f(﹣x1);(3)f(x1)>f(﹣x1);(4)f(x2)>f(﹣x2).正確的個(gè)數(shù)為( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com