【題目】某單位安排7位員工對一周的7個夜晚值班,每位員工值一個夜班且不重復(fù)值班,其中員工甲必須安排在星期一或星期二值班,員工乙不能安排在星期二值班,員工丙必須安排在星期五值班,則這個單位安排夜晚值班的方案共有( )
A. 96種B. 144種C. 200種D. 216種
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,為的中點(diǎn).
(1)證明:平面;
(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,為等邊三角形,,且,O,M分別為,的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)設(shè)是線段上一點(diǎn),滿足平面平面,試說明點(diǎn)的位置;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為.
(Ⅰ)求函數(shù)的解析式和當(dāng)時的單調(diào)減區(qū)間;
(Ⅱ)的圖象向右平行移動個長度單位,再向下平移1個長度單位,得到的圖象,用“五點(diǎn)法”作出在內(nèi)的大致圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】朱世杰是歷史上最偉大的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中“如像招數(shù)”五問中有如下問題:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人,每人日支米三升,共支米四百三石九斗二升,問筑堤幾日”。其大意為“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始每天派出的人數(shù)比前一天多7人,修筑堤壩的每人每天分發(fā)大米3升,共發(fā)出大米40392升,問修筑堤壩多少天”,在該問題中前5天共分發(fā)了多少大米?
A. 1170升 B. 1380升 C. 3090升 D. 3300升
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,短軸長和焦距都等于2, 是橢圓上的一點(diǎn),且在第一象限內(nèi),過且斜率等于的直線與橢圓交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為.
(Ⅰ)證明:直線的斜率為定值;
(Ⅱ)求面積的最大值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
(1)終邊在y軸上的角的集合是;
(2)把函數(shù)f(x)=2sin2x的圖象沿x軸方向向左平移個單位后,得到的函數(shù)解析式可以表示成f(x)=2sin;
(3)函數(shù)f(x)=sinx+的值域是[-1,1];
(4)已知函數(shù)f(x)=2cosx,若存在實(shí)數(shù)x1,x2,使得對任意的實(shí)數(shù)x都有成立,則的最小值為2π.
其中正確的命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且短軸長為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知分別為橢圓的左右頂點(diǎn), ,,且,直線與分別與橢圓交于兩點(diǎn),
(i)用表示點(diǎn)的縱坐標(biāo);
(ii)若面積是面積的5倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年5月27日當(dāng)今世界圍棋排名第一的柯潔在與的人機(jī)大戰(zhàn)中中盤棄子認(rèn)輸,至此柯潔與的三場比賽全部結(jié)束,柯潔三戰(zhàn)全負(fù),這次人機(jī)大戰(zhàn)再次引發(fā)全民對圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時間不低于40分鐘的學(xué)生稱為“圍棋迷”.
(1)請根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有95%的把握認(rèn)為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)為了進(jìn)一步了解“圍棋迷”的圍棋水平,從“圍棋迷”中按性別分層抽樣抽取5名學(xué)生組隊(duì)參加校際交流賽,首輪該校需派兩名學(xué)生出賽,若從5名學(xué)生中隨機(jī)抽取2人出賽,求2人恰好一男一女的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com