△ABC的內(nèi)角A、B、C分別對(duì)應(yīng)邊a、b、c,若a、b、c成等比數(shù)列且sinA=2sinC,則cosB=(  )
A、
1
4
B、
2
4
C、
2
3
D、
3
4
分析:由題設(shè)條件得,b2=ac,再由正弦定理與sinA=2sinC,可解得a=2c,將這些代入由余弦定理得出的關(guān)于cosB的方程即可求出.
解答:解:由題意得b2=ac,由正弦定理得a=2c,
由余弦定理得b2=a2+c2-2accosB,
將b2=ac及a=2c代入上式解得
cosB=
3
4

故應(yīng)選D.
點(diǎn)評(píng):考查正弦定理與余弦定理,屬于運(yùn)用定理建立所求量的方程通過解方程來求值的題目;訓(xùn)練目標(biāo)是靈活運(yùn)用公式求值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,已知a=1,b=2,cosC=
14

(Ⅰ)求△ABC的周長(zhǎng);
(Ⅱ)求cos(A-C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•唐山二模)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,△ABC的面積S=
3
4
(c2-a2-b2)

(Ⅰ)求C;
(Ⅱ)若a+b=2,且c=
3
,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•寶坻區(qū)一模)設(shè)函數(shù)f(x)=sinx+cos(x+
π
6
),x∈R
(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)記△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若f(A)=
3
2
,且a=
3
2
b
,求角C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,三邊長(zhǎng)a、b、c成等比數(shù)列,且a2=c2+ac-bc,則
asinB
b
的值為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知△ABC的內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,若3a2+2ab+3b2-3c2=0,則角C的大小是
π-arccos
1
3
π-arccos
1
3

查看答案和解析>>

同步練習(xí)冊(cè)答案