【題目】半圓的直徑的兩端點為,點在半圓及直徑上運動,若將點的縱坐標伸長到原來的2倍(橫坐標不變)得到點,記點的軌跡為曲線.

(1)求曲線的方程;

(2)若稱封閉曲線上任意兩點距離的最大值為該曲線的直徑,求曲線直徑”.

【答案】1)答案見解析 2.

【解析】

(1)設(shè),則,由題意可知當在直徑上時,顯然;當在半圓上時,,即可求得答案;

(2)設(shè)曲線上兩動點,顯然,至少有一點在橢圓上時才能取得最大,不妨設(shè),,根據(jù)不等式性質(zhì),即可求得曲線直徑.

(1)設(shè),則,

由題意可知當在直徑上時,顯然;

在半圓上時,,

曲線的方程為.

(2)設(shè)曲線上兩動點,

顯然,至少有一點在橢圓上時才能取得最大,

不妨設(shè),

,

等號成立時:,,,

由兩點距離公式可得:,

故曲線直徑.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如下圖所示(收支差額=車票收入-支出費用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(1)不改變車票價格,減少支出費用;建議(2)不改變支出費用,提高車票價格.下面給出的四個圖形中,實線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則(

A.①反映建議(2),③反映建議(1B.①反映建議(1),③反映建議(2

C.②反映建議(1),④反映建議(2D.④反映建議(1),②反映建議(2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,橢圓)的短軸長等于圓半徑的倍,的離心率為

1)求的方程;

2)若直線交于兩點,且與圓相切,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)的圖像與函數(shù)的圖像關(guān)于直線對稱.

1)求函數(shù)的解析式;

2)若函數(shù)在區(qū)間上的值域為,求實數(shù)的取值范圍;

3)設(shè)函數(shù),試用列舉法表示集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為提高市場銷售業(yè)績,設(shè)計了一套產(chǎn)品促銷方案,并在某地區(qū)部分營銷網(wǎng)點進行試點.運作一年后,對采取促銷沒有采取促銷的營銷網(wǎng)點各選了50個,對比上一年度的銷售情況,分別統(tǒng)計了它們的年銷售總額,并按年銷售總額增長的百分點分成5組:,,,分別統(tǒng)計后制成如圖所示的頻率分布直方圖,并規(guī)定年銷售總額增長10個百分點及以上的營銷網(wǎng)點為精英店”.

采用促銷的銷售網(wǎng)點

不采用促銷的銷售網(wǎng)點

1)請根據(jù)題中信息填充下面的列聯(lián)表,并判斷是否有的把握認為精英店與采促銷活動有關(guān);

采用促銷

無促銷

合計

精英店

非精英店

合計

50

50

100

2)某精英店為了創(chuàng)造更大的利潤,通過分析上一年度的售價(單位:元)和日銷量(單位:件)()的一組數(shù)據(jù)后決定選擇作為回歸模型進行擬合.具體數(shù)據(jù)如下表,表中的

45.8

395.5

2413.5

4.6

21.6

①根據(jù)上表數(shù)據(jù)計算,的值;

②已知該公司產(chǎn)品的成本為10/件,促銷費用平均5/件,根據(jù)所求出的回歸模型,分析售價定為多少時日利潤可以達到最大.

附①:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

附②:對應(yīng)一組數(shù)據(jù)

其回歸直線的斜率和截距的最小二乘法估計分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一顆均勻的骰子擲兩次,第一次得到的點數(shù)記為,第一次得到的點數(shù)記為,則方程組有唯一解的概率是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,,平面平面,.

1)求證:;

2)求二面角的余弦值;

3)在棱上是否存在點,使得平面?若存在,求的值?若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),,記.

1)若,,當時,求的最大值;

2)若,,且方程有兩個不相等的實根、,求的取值范圍;

3)若,,,且a、b、c是三角形的三邊長,試求滿足等式:有解的最大的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面,的中點

1)證明:平面

2)若是邊長為2的等邊三角形,求二面角的余弦值

查看答案和解析>>

同步練習(xí)冊答案