考點(diǎn):二次函數(shù)的性質(zhì),導(dǎo)數(shù)的運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由x=±1時(shí)f(x)取得極值可設(shè)f'(x)=a(x-1)(x+1)=ax
2-a,從而可得f(x)=
-ax+b,再由極大值為2,f(2)=-2,可得方程組,解出即可,注意兩種情況;
(2)y=lf(x)-k|-1=|-x
3+3x-k|-1,令m(x)=x
3-3x+k,函數(shù)y=|f(x)-k|-1有兩個(gè)零點(diǎn),則m(x)圖象與y=±1有兩個(gè)交點(diǎn),利用導(dǎo)數(shù)求出函數(shù)m(x)的極大值、極小值,結(jié)合函數(shù)圖象,可得m所滿足的條件,解出即可;
(3)存在實(shí)數(shù)a,b,c∈[0,1],使得g(a)+g(b)<g(c),問題等價(jià)于2g
min(x)<g
max(x),利用導(dǎo)數(shù)對(duì)t進(jìn)行分類討論可得最小值,解出不等式即可,其中當(dāng)0<t<1時(shí),不等式無解的判斷要構(gòu)造函數(shù),借助函數(shù)的單調(diào)性.
解答:
解:(1)∵函數(shù)f(x)的導(dǎo)函數(shù)f′(x)是二次函數(shù),
當(dāng)x=1和-1時(shí),f(x)有極值,
∴f′(x)=a(x-1)(x+1)=ax
2-a,
∴f(x)=
-ax+b,
∵f(x)有極值,且極大值為2,f(2)=-2,
∴
-2a+b=-2,
-a+b=2,
解得a=-3,b=0,
∴函數(shù)f(x)的解析式是f(x)=-x
3-3x;
(2)∵y=|f(x)-k|-1=|-x
3-3x-k|-1
由y=0得,x
3+3x+k=1或x
3+3x+k=-1,
令m(x)=x
3-3x+k,則m′(x)=3x
2-3=3(x+1)(x-1),
當(dāng)x<-1時(shí),m′(x)>0,當(dāng)-1<x<1時(shí),m′(x)<0,當(dāng)x>1時(shí),m′(x)>0,
所以當(dāng)x=-1時(shí),m(x)有極大值,m(-1)=2+k,當(dāng)x=1時(shí),m(x)有極小值,m(1)=-2+k,
函數(shù)y=|f(x)-k|-1有兩個(gè)零點(diǎn),則m(x)圖象與y=±1有兩個(gè)交點(diǎn),
所以2+k<-1或-2+k>1,或
,解得k<-3,或k>3,
所以實(shí)數(shù)k的取值范圍為:k<-3或k>3.
(3)g(x)=[
+2x
2+(1-t)x]e
-x=[x
2+(1-t)x+1]e
-x,
g′(x)=(2x+1-t)e
-x-e
-x[x
2+(1-t)x+1]
=-e
-x[x
2-(t+1)x+t]=-e
-x(x-1)(x-t),
x∈[0,1],當(dāng)x<t時(shí),g′(x)≤0,g(x)單調(diào)遞減;當(dāng)x>t時(shí),g′(x)≥0,g(x)單調(diào)遞增.
∴x=t為g(x)的極小值點(diǎn).
①當(dāng)t≤0時(shí),g(x)在[0,1]上遞增,g
min(x)=g(0)=1,gmax(x)=g(1)=(3-t)e-1,
只須2×1<(3-t)e
-1,t<3-2e.
∴此時(shí),t<3-2e.
②當(dāng)t≥1時(shí),g(x)在[0,1]上遞減,g
min(x)=g(1)=(3-t)e
-1,g
max=g(0)=1,
只須2(3-t)e
-1<1,t>3-
,
∴此時(shí),t>3-
.
③當(dāng)0<t<1時(shí),g
min(x)=g(t),而g
max(x)=max{g(0),g(1)},
所以2g(t)<max{1,
},即2×
<max{1,
}(*),
易知y=
在[0,1]上單調(diào)遞減,所以2×
≥
,而
<,
所以不等式(*)無解,
綜上所述,當(dāng)t∈(-∞,3-2e)∪(3-
,+∞)時(shí),滿足題意.
點(diǎn)評(píng):本題考查函數(shù)的零點(diǎn)、利用導(dǎo)數(shù)研究函數(shù)的極值、最值及恒成立問題,考查分類討論思想,(3)問的解答關(guān)鍵是對(duì)問題進(jìn)行等價(jià)轉(zhuǎn)化為最值求解,本題綜合性強(qiáng)、難度較大.