【題目】經(jīng)市場調(diào)研,某超市一種玩具在過去一個月(按30天)的銷售量(件)與價格(元)均為時間(天)的函數(shù),且銷售量近似滿足,價格近似滿足。

1)試寫出該種玩具的日銷售額與時間, )的函數(shù)關(guān)系式;

2)求該種玩具的日銷售額的最大值。

【答案】(1)(2)當(dāng)時,該種玩具的日銷售額的最大值為1408元

【解析】試題分析:(1)根據(jù)題意可得,寫成分段函數(shù)的形式即可;(2)根據(jù)(1)中的函數(shù)解析式,對分段函數(shù)分別求最值,然后比較可得日銷售額的最大值為1408元。

試題解析:

(1)由題意得

(2)①當(dāng), 時,

,又

所以當(dāng)時, 有最大值,且;

②當(dāng), 時,

則函數(shù)上單調(diào)遞增,

所以當(dāng)時, 有最大值,且

綜上當(dāng)時,該種玩具的日銷售額的最大值為1408元。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校對高二年級選學(xué)生物的學(xué)生的某次測試成績進(jìn)行了統(tǒng)計,隨機(jī)抽取了名學(xué)生的成績作為樣,根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計表和頻率分布直方如下

(1)求表中的值和頻率分布直方圖中的值;

(2)如果用分層抽樣的方法,從樣本成績在的學(xué)生中共抽取人,再從人中選人,

求這人成績在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點處的切線與直線平行,且,其中.

(Ⅰ)求的值,并求出函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè)函數(shù),對于正實數(shù),若,使得成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求曲線在點處的切線方程;

2)若函數(shù) 上是減函數(shù),求實數(shù)的取值范圍;

3)令,是否存在實數(shù),當(dāng)是自然對數(shù)的底數(shù))時,函數(shù)的最小值是?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有五張卡片,其中紅色卡片三張,標(biāo)號分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號分別為1,2.

(1)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號之和小于4的概率;

(2)現(xiàn)袋中再放入一張標(biāo)號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號之和小于4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程

3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方體ABCDA1B1C1D1中,EF,E1F1分別是棱AB,AD,B1C1C1D1的中點,

求證:(1)

(2)∠EA1F=∠E1CF1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為正項數(shù)列的前n項和,且滿足.

(1)求出,

(2)猜想的通項公式并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線C的極坐標(biāo)方程為ρ4cosθ+3ρsin2θ=0,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l過點M10),傾斜角為

)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;

)若曲線C經(jīng)過伸縮變換后得到曲線C′,且直線l與曲線C′交于A,B兩點,求|MA|+|MB|

查看答案和解析>>

同步練習(xí)冊答案