(選做題)已知函數(shù)f(x)=|x-a|.不等式f(x)≤3的解集為{x|-1≤x≤5}.
(1)求實數(shù)a的值;
(2)若f(x)+f(x+5)≥c2-4c對一切實數(shù)x恒成立,求實數(shù)c的取值范圍.
(1)∵f(x)≤3即|x-a|≤3,得a-3≤x≤a+3.
∴f(x)≤3的解集是[a-3,a+3],
結(jié)合題意,得
a-3=-1
a+3=5
,可得a=2.
(2)∵f(x)=|x-2|,
∴原不等式即:|x-2|+|x+3|≥c2-4c對一切實數(shù)x恒成立,
∵|x-2|+|x+3|≥|(x-2)-(x+3)|=5,即|x-2|+|x+3|的最小值為5
∴5≥c2-4c,即c2-4c-5≤0,解之得-1≤c≤5
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)已知函數(shù)f(x)=|x+1|,
(1)解不等式f(x)≥2x+1;
(2)?x∈R,使不等式f(x-2)-f(x+6)<m成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)已知函數(shù)f(x)=|2x-1|+2,g(x)=-|x+2|+3.
(Ⅰ)解不等式:g(x)≥-2;
(Ⅱ)當(dāng)x∈R時,f(x)-g(x)≥m+2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)已知函數(shù)f(x)=|x-a|.不等式f(x)≤3的解集為{x|-1≤x≤5}.
(1)求實數(shù)a的值;
(2)若f(x)+f(x+5)≥c2-4c對一切實數(shù)x恒成立,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•開封一模)(選做題)已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≥3的解集為{x|x≤1或x≥5},求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+4)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(不等式選做題)已知函數(shù)f(x)=|2x+1|,g(x)=|x|+a.若存在x∈R,使得f(x)≤g(x)成立,則實數(shù)a的取值范圍為
[-
1
2
,+∞].
[-
1
2
,+∞].

查看答案和解析>>

同步練習(xí)冊答案