已知拋物線y2=2px(p>0)的焦點為F,P、Q是拋物線上的兩個點,若△PQF是邊長為2的正三角形,則p的值是________.

 

p=2±

【解析】依題意得F,設(shè)P,Q(y1≠y2).由拋物線定義及PF=QF,得,所以,所以y1=-y2.又PQ=2,因此|y1|=|y2|=1,點P.又點P位于該拋物線上,于是由拋物線的定義得PF==2,由此解得p=2±.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第十一章第6課時練習卷(解析版) 題型:解答題

某工藝廠開發(fā)一種新工藝品,頭兩天試制中,該廠要求每位師傅每天制作10件,該廠質(zhì)檢部每天從每位師傅制作的10件產(chǎn)品中隨機抽取4件進行檢查,若發(fā)現(xiàn)有次品,則當天該師傅的產(chǎn)品不能通過.已知李師傅第一天、第二天制作的工藝品中分別有2件、1件次品.

(1)求兩天中李師傅的產(chǎn)品全部通過檢查的概率;

(2)若廠內(nèi)對師傅們制作的工藝品采用記分制,兩天全不通過檢查得0分,通過1天、2天分別得1分、2分,求李師傅在這兩天內(nèi)得分的數(shù)學期望.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第十一章第4課時練習卷(解析版) 題型:填空題

設(shè)50件商品中有15件一等品,其余為二等品.現(xiàn)從中隨機選購2件,則所購2件商品中恰有一件一等品的概率為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第十一章第3課時練習卷(解析版) 題型:解答題

已知(ax+1)7(a≠0)的展開式中,x3的系數(shù)是x2的系數(shù)與x4的系數(shù)的等差中項,求a;

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第九章第9課時練習卷(解析版) 題型:解答題

已知定點F(0,1)和直線l1:y=-1,過定點F與直線l1相切的動圓圓心為點C.

(1)求動點C的軌跡方程;

(2)過點F的直線l2交軌跡于兩點P、Q,交直線l1于點R,求·的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第九章第9課時練習卷(解析版) 題型:填空題

已知拋物線關(guān)于x軸對稱,它的頂點在坐標原點O,并且經(jīng)過點M(2,y0).若點M到該拋物線焦點的距離為3,則OM=________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第九章第9課時練習卷(解析版) 題型:填空題

拋物線y2=8x的焦點到準線的距離是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第九章第8課時練習卷(解析版) 題型:解答題

已知雙曲線過點(3,-2),且與橢圓4x2+9y2=36有相同的焦點.

(1)求雙曲線的標準方程;

(2)求以雙曲線的右準線為準線的拋物線的標準方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第九章第6課時練習卷(解析版) 題型:填空題

設(shè)F1、F2分別是橢圓=1(a>b>0)的左、右焦點,若在直線x=上存在點P,使線段PF1的中垂線過點F2,則橢圓的離心率的取值范圍是________.

 

查看答案和解析>>

同步練習冊答案