(本小題12分)已知f(x)=在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實數(shù)a的值組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.
(1) A={a|-1≤a≤1} (2) {m|m≥2,或m≤-2}
解析試題分析:解:(Ⅰ)f'(x)=4+2 ∵f(x)在[-1,1]上是增函數(shù),
∴f'(x)≥0對x∈[-1,1]恒成立,
即x2-ax-2≤0對x∈[-1,1]恒成立. ①
設(shè)(x)=x2-ax-2,
方法一:
(1)=1-a-2≤0,
① -1≤a≤1,
(-1)=1+a-2≤0.
∵對x∈[-1,1],只有當a=1時,f'(-1)=0以及當a=-1時,f'(1)=0
∴A={a|-1≤a≤1}.
方法二:
(Ⅱ)由
∵△=a2+8>0
∴x1,x2是方程x2-ax-2=0的兩非零實根,
從而|x1-x2|==.
∵-1≤a≤1,∴|x1-x2|=≤3.
要使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,
當且僅當m2+tm+1≥3對任意t∈[-1,1]恒成立,
即m2+tm-2≥0對任意t∈[-1,1]恒成立. ②
設(shè)g(t)=m2+tm-2=mt+(m2-2),
方法一:
②g(-1)=m2-m-2≥0,
g(1)=m2+m-2≥0,
m≥2或m≤-2.
所以,存在實數(shù)m,使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,其取值范圍是{m|m≥2,或m≤-2}.
方法二:
當m=0時,②顯然不成立;
當m≠0時,
m≥2或m≤-2.
所以,存在實數(shù)m,使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,其取值范圍是{m|m≥2,或m≤-2}.
考點:函數(shù)單調(diào)性和函數(shù)與方程
點評:解決該試題的關(guān)鍵是能利用導數(shù)的符號判定函數(shù)單調(diào)性,同時能結(jié)合方程的思想來求解參數(shù)的范圍,屬于基礎(chǔ)題。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在處取得極值.
(1)求實數(shù)的值;
(2)若關(guān)于的方程在區(qū)間上恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍;
(3)證明:對任意的正整數(shù),不等式都成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù).
(I)若曲線與曲線在它們的交點處具有公共切線,求的值;
(II)當時,若函數(shù)在區(qū)間內(nèi)恰有兩個零點,求的取值范圍;
(III)當時,求函數(shù)在區(qū)間上的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),(,為常數(shù),),且這兩函數(shù)的圖像有公共點,并在該公共點處的切線相同.
(Ⅰ)求實數(shù)的值;
(Ⅱ)若時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若不等式在區(qū)間(0,+上恒成立,求的取值范圍;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù).
(1)若的兩個極值點為,且,求實數(shù)的值;
(2)是否存在實數(shù),使得是上的單調(diào)函數(shù)?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知在區(qū)間上是增函數(shù),在區(qū)間和上是減函數(shù),且
(1)求函數(shù)的解析式.
(2)若在區(qū)間上恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題14分)已知函數(shù)在處取得極值,且在處的切線的斜率為1。
(Ⅰ)求的值及的單調(diào)減區(qū)間;
(Ⅱ)設(shè)>0,>0,,求證:。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(滿分12分)已知函數(shù).(Ⅰ) 求在上的最小值;(Ⅱ) 若存在(是常數(shù),=2.71828)使不等式成立,求實數(shù)的取值范圍;
(Ⅲ) 證明對一切都有成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com