(本題14分)已知函數(shù)處取得極值,且在處的切線的斜率為1。
(Ⅰ)求的值及的單調(diào)減區(qū)間;
(Ⅱ)設(shè)>0,>0,,求證:

解析試題分析:解:(Ⅰ) 
,∴ ,即,∴
 ,又,∴ ,∴
綜上可知   
,定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9b/9/0yby12.png" style="vertical-align:middle;" />>0, 
<0 得 0<,∴的單調(diào)減區(qū)間為……………6分
(Ⅱ)先證
即證
即證:
 ,∵>0,>0 ,∴ >0,即證
 則

 
① 當(dāng),即0<<1時(shí),>0,即>0
在(0,1)上遞增,∴=0,
② 當(dāng),即>1時(shí),<0,即<0
在(1,+∞)上遞減,∴=0,
③ 當(dāng),即=1時(shí),=0
綜合①②③知


∴  
綜上可得    ……………14分
考點(diǎn):導(dǎo)數(shù),極值,函數(shù)與不等式
點(diǎn)評(píng):對(duì)于導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,關(guān)鍵是利用導(dǎo)數(shù)的符號(hào)判定單調(diào)性,進(jìn)而得到極值,和最值, 證明不等式。屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為常數(shù),已知函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).
(1)設(shè)為函數(shù)的圖像上任意一點(diǎn),求點(diǎn)到直線的距離的最小值;
(2)若對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)已知f(x)=在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實(shí)數(shù)a的值組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x1、x2.試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分)
已知函數(shù),設(shè)曲線y=在與x軸交點(diǎn)處的切線為y=4x-12,的導(dǎo)函數(shù),且滿足
(1)求
(2)設(shè),求函數(shù)g(x)在[0,m]上的最大值。
(3)設(shè),若對(duì)一切,不等式恒成立,求實(shí)數(shù)t的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)
(Ⅰ)若,求的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)≥0時(shí)≥0,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù).
(1)對(duì)于任意實(shí)數(shù),恒成立(其中表示的導(dǎo)函數(shù)),求的最大值;
(2)若方程上有且僅有一個(gè)實(shí)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分15分)已知函數(shù)
(1)求函數(shù)的圖像在點(diǎn)處的切線方程;
(2)若,且對(duì)任意恒成立,求的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
函數(shù),過曲線上的點(diǎn)的切線方程為
(Ⅰ)若時(shí)有極值,求的表達(dá)式;
(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖像過點(diǎn)的切線方程;
(3)對(duì)一切的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案